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AFIT-ENS-13-M-01
Abstract

A well-known multivariate data reduction method is principal components
analysis (PCA). PCA transforms the variables under study into a set of components that
are used to summarize the variation among the variables. The benefit is the dimension of
the data may be reduced by the descriptive power of the components, permitting tractable
analysis on large and messy datasets. Integral to successful PCA is determining when to
stop extracting components — the matter is not a trivial one.

A method that consistently produces reliable component extraction estimates is
Horn’s test, named after researcher John L. Horn who introduced the technique in 1965.
The result is Horn’s curve, a graphical indicator used to make a dimensionality
assessment for any n x p matrix. The drawback of Horn’s test is it requires — for each
size n x p study — a large amount of random data to evaluate the hidden component
structure.

Leveraging the flexibility and power of the MATLAB software package, a lookup
table interpolates nearest neighbor searches of pre-processed mean eigenvalue data to
provide real-time results for datasets up to 1,000 variables on 7,000 samples. The
methodology is extended to a linear regression second-order model producing Horn’s
curve, significantly reducing the required size of the lookup table with no loss of

resolution into the dimensionality estimate.
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HORN’S CURVE ESTIMATION THROUGH MULTI-DIMENSIONAL

INTERPOLATION

. Introduction

1.1. Background

Prevalent in the fields of applied science is the need to conduct experiments,
collect data, and draw meaningful conclusions from the observations. Quite often data are
multivariate and the simultaneous interactions among all the variables are of interest.
Datasets may consist of hundreds of variables (p) and tens of thousands of samples (n).
Contemporary data storage capacity and computer processing power means it is possible
to access trillions of data bits with little effort or significant cost. Field work is still alive
and well — designing experiments, conducting tests, and recording results are still part of
a scientist’s job description — and the ability to collaborate and instantaneously share
information has transformed almost all walks of research. The researcher would
probably find it useful to describe the relationship between variables without having to
report each and every raw combination of the data. Ideally, no data would be discarded
yet a way to summarize the important information is needed.
1.2. Principal Components Analysis

One of the most commonly used data reduction techniques is called principal

components analysis (PCA). The word ‘principal’ is used to mean that some components

are significant and should be used for further analysis (a process called extraction).
Components not significant should be discarded and excluded from additional analysis.

1



When the principal components have been identified, we speak of the dimensionality of
the data. For example, extracting four principal components of twelve total components
results in a dimensionality of four.

The goal of PCA is to describe as much of the total variance among the variables
as possible by using a smaller number of linear combinations — the principal components
— of the variables without losing useful information (Dillon & Goldstein, 1984). The
benefit of choosing to use PCA is, when adequately determined, the principal
components orthogonally capture the information in new variables which summarize the
original ones, simplifies the analysis, and provides additional insight to the data. In PCA,
information is in the form of total variance and how it is orthogonally dispersed in the
components.

Mathematically, the components are designed to take on as much sample variance
as possible; each component is in fact an eigenvector of the correlation matrix. The
components are ranked (indexed) according to the size of their corresponding
eigenvalues. In this paper, PCA results from only the correlation matrix are used. The
rationale behind this decision is given in Chapter I11.

1.3. An Example--Determining Which Component Loadings Are Relevant

Loading refers to the scaling of the original variables to that of the component
structure. Obtaining the p x p loadings matrix is one of the first step taken after the
components are calculated. The elements of this matrix show each individual correlation
of the variables to the components. The loadings matrix will be used to draw further

inferences regarding the nature of the components. Let’s take a look at an example.



In Table 1.1, we see a 6 x 6 loadings matrix with row and column identifiers. The
source of data is a study of pilots and engineers taken by groups on several motor and
sensory tests (Bauer, 2012). In the first column (on the left side of the matrix) are the
names of the original study variables: ‘Intelligence’, ‘Form Relations’, etc. The
corresponding eigenvalues (1) ranking of the components for each component is shown
in Row 2. Moving to the right along Row 2, the second column is the value 1.7751 for
C; (component one), the third column is 1.3544 for C, (component two) and so on. Each
value in the body of the matrix field represents a loading of correlation coefficients
between the variables and the components. For instance, the loading for ‘Dottings’ and

C; equals -0.7239.

Table 1.1. Component loadings matrix of six variables.

aag)e:;lze Correlation Matrix Derived Eigenvalues
A4, =1.7751 A,=13544 A, =1.0727 1,=0.8148 4,=05306 A, =0.4524
Variable Name Component Number (C;)
C, C, Cs Cy Cs Cs

Intelligence -0.5361 -0.4614 -0.4783 0.3546 -0.1532 -0.3489
Form Relations 0.1294 -0.8696 0.1816 0.1188 -0.2041 0.3719
Dynamometer -0.5135 0.2539 0.4484 0.6479 0.1883 0.1248
Dottings -0.7239 0.3660 0.1103 -0.2215 -0.5148 0.1258
Sensory 0.4155 0.4142 -0.6492 0.3604 -0.1466 0.2879
Perseverance -0.7145 -0.1237 -0.4198 -0.2761 0.3789 0.2795

Still within Table 1.1, under each of the columns for C;, Cy, Cs, C4, and Cs are a number
of bold and/or underlined values. Bold font indicates a loading strength between [0.5, 1]
or [-1, 0.5] and underlined values are the largest loading for a particular variable. Notice
that C; has four such loadings under it corresponding to ‘Intelligence’, ‘Dynamometer’,

‘Dottings’, and ‘Perseverance’. Moving to C,, there is only one such loading (‘Form



Relations’) and similar patterns emerge for Cs, C4, and Cs. We observe that Cg has no
bold values in its column, indicating it has no strong correlation to any variable.

The analysis thus far appears mundane. If we take a closer look, this time from a
perspective of the variables, we see that four variables load to one component but the
remaining two, ‘Dynamometer’ and ‘Dottings’, each load under two components.
Perhaps the level of correlation lends insight into what is going on but we have no such
luck. Instead, we are led to the observation that ‘Dynamometer’ is moderately negatively
correlated to C; (-0.5135) and stronger positively correlated (0.6479) to C4. The pattern
for ‘Dottings’ is equally confounding; it is strongly negatively correlated to C; (-0.7239)
and lesser so to Cs (-0.6492). We desire good summarization power in the components
but determining how important C; and Cs are to ‘Dottings’ is not clear. It is incorrect to
assume we will take the larger loadings value of the two components because this
approach violates our intention of explaining maximum total variance. In the case of
‘Dynamometer’, we would lose ((1.775-0.8148)/6)100 = 16% variance in summarizing
power if we adopt this strategy.

We are seeing these artifacts because the component structure is orthogonal and
each component will explain (or assume) as much of the total variance as possible. The
variance assumption process by the components is mutually exclusive and collectively
exhaustive: The first component explains the largest proportion of total variance, the
second component assumes the next highest proportion, and so on until the last
component explains the remaining amount. As such, the structure expands to fill the

‘variance space’ provided but not all components assume an equal share (the exception



being a perfectly orthogonal set of study variables which yield a correlation matrix equal
to the identity matrix). It is justified to be suspect of components with lower ranked
eigenvalues that load just one variable, especially if the variable has loaded to an earlier
component of a higher rank. In these cases, loadings values should not be the primary
discriminator for principal component selection. It can be shown that such cases
represent mathematically true results with no practical interpretation. We are, in some
form, being misled by this sort of variable-component relationship. What we need is a
way to determine the significance of the components. This situation is indicative of the
type problem this thesis seeks to find a solution for.

1.4. Impact of Keeping The Wrong Number of Components: Part |

In the pilots and engineers example, we observed a myriad of difficulties in pin
pointing the loadings relevance. We can distill all the cases to just two scenarios: Too
few or too many components.

If too few components are kept, we lose summarizing power because we discard
some proportion of the total variance. Because the variance dispersion among
components is relative to the number of variables in the study, we would omit a nominal
amount of variance if there are hundreds of components available and we choose to
discard many dozens of the smallest components. However, if just a few variables are in
the data, omission of one or two components from further analysis may result in
significant loss of information. We may also find the instance of one or two components
that explain most or all of the variables. While such an act could be considered a feat of

summarization, we are likely more interested in the composite aspect of the component;



that is, what hidden feature of the variables does the component explain?

Conversely, if too many components are kept then we have the case of the
‘phantom’ loading entry; a single, strong correlation that has no practical significance. In
his paper Stopping Rules in Principal Components Analysis: A Comparison of
Heuristical and Statistical Approaches, Jackson states that one variable significantly
loaded to one component "...is not a satisfactory multivariate summary" (1993:2207). In
the case of one-variable-to-one-component, we should consider the summarization has
been effectively watered down; why retain components that add no insight?

Therefore, given the considerations that too few or too many components is
problematic, our goal should be "...to find the solution, or at least a solution that others
will regard quite highly if not the best." (Horn & Engstrom, 1979:283)

1.4.1. Factor Fission

Factor fission occurs when too many components are extracted, causing loadings
to shift suddenly from lower dimension components to higher dimension ones. While
factor fission does not occur in PCA, it is a concern for factor analysis (FA). Itis
mentioned here solely for completeness in regard to the need for an accurate assessment
of component dimensionality. As has been pointed out in literature, PCA and FA share
similar methodology and both make use of the same stopping rules (Velicer, 1976:324)
(Franklin, Gibson, Robertson, Pohlmann, & Fralish, 1995:99) (Zwick & Velicer,
1986:433). The interested reader is directed to the paper Factor Analysis: Limitations
and Alternatives by Ehrenberg & Goodhardt (1976). They provide an excellent example

and thorough analysis of a real-world study in which factor fission occurs. Cattell



(1966:245-247) also gives discussion to factor fission and the number of factors to keep.
This paper does not explore further other multivariate analysis methods nor the
factor fission phenomenon. The solutions presented by this thesis were evaluated using
PCA methods only; however, by the preceding remarks noted these solutions may be
extended as appropriate to factor analytic techniques.
1.5. Component Extraction Stopping Rules
As we have seen, determining the number of principal components is not always a
straight-forward process. Fortunately, sound guidance exists to help with this task in the

form of component extraction stopping rules. Many such rules exist; however, we shall

see that not all of them perform to the same level of accuracy — there is usually an inverse
relationship between the accuracy of a rule and how easy it is to apply (that is, simple
rules trade accuracy in terms of ease of use and vice versa).
1.6. Analyst Subjectivity

The complex nature of human behavior has not yet been broached. This is not to
say analysts play favorites in reaching conclusions, only that varied personal experiences,
knowledge, and research goals exist in carrying out a study and interpreting the results.
An ideal methodology to determine the number of principal components to retain should
minimize subjective evaluation.
1.7. Problem Statement

The need exists for easy access to an accurate visual analysis component
extraction stopping rule. A worthwhile endeavor is to design the solution so that it

minimizes the amount of interpretation on behalf of the analyst yet leaves enough latitude



for unique conditions or circumstances that exist for all research projects (that is, it does
not tie the hands of the analyst by offering too specific or restrictive results).
1.8. Research Objectives

The primary objective of this research is to develop an accurate tool determine the
number of principal components to retain when conducting principal component analysis.
The strategy to achieve this objective is to survey published literature for visual analysis
stopping rule candidates, select an appropriate candidate, and automate (i.e., create a
computer algorithm of) the candidate rule to provide the user/analyst with both a
computer program input interface for data selection and a visual output providing a
synopsis of information captured by the principal components in both graphical and
tabulated format. Rather than develop new theory, this thesis uses existing theory to
develop this new analytical capability.

The secondary objective is to create a parsimonious solution, which minimizes the
size and complexity of the analytical tool created. Once a fully functional algorithm is
created, the algorithm will be refined to enhance user-friendliness, provide guidelines to
interpret the output, and reduce the data footprint required to run the algorithm.

The intended users of the program are practitioners who need to perform PCA,
have access to a computer running MATLAB® (© 1994-2013 The MathWorks, Inc.)
Version 7 (Release 14) or greater, and understand their data enough to format it properly
for the algorithm. Users require only limited MATLAB skills to enjoy the benefits
achieved by employing the automated rule. Finally, any instructions or interface with the

user will be free of unnecessary and unclear jargon.



1.9. Key Concepts
Before proceeding, key concepts should be introduced. They are used throughout
the thesis and being familiar with them will orient later discussion.

1.9.1. Sampled vs. Random Data

Sampled data are gathered from a real-world experiment. Random data, on the
other hand, come from a carefully structured simulation model meant to mimic or make
use of an underlying probability distribution of the system being observed. Random data
does not exist outside the computer. The methodology presented makes extensive use of
both kinds of data. To be distinct in usage, the data origin will be identified.

1.9.2. Use of Ambiguous Terms

Within this thesis, the words ‘factor’ and ‘component’, ‘variable’ and ‘feature’,
and ‘observation’ and ‘sample’ are considered synonymous, respectively. The author
takes no argument with purists and only strives to be flexible in the chosen vocabulary.
1.10. Assumptions/Limitations

All software have design limitations and understanding not only how to use the
software but what goes on (within reason) inside the ‘black box’ is worthy advice. The
MATLAB software package was used to develop the solutions for this thesis and where
possible, built-in functions (those that are provided as part of the licensed MATLAB
library) are used. There are two reasons for this. (1) These functions are generally
optimized for speed and accuracy and (2) built-in functions simplify script structure,
streamline logic, and cut-down on debugging and troubleshooting. The built-in functions

needed to code all techniques for this project have been vetted by the author during



multivariate analysis coursework (Bauer, 2012). The vetting process consisted of coding
individually each matrix or matrix function and then comparing the results of similar
MATLAB functions on the same input to produce identical results.

Because infinite combinations of the number of observations, n, and the
dimension of the data, p, exist there is a limitation to the size of problem the algorithm
will be able to solve. A survey of data dimensions found in published analyses was used
to determine the dimensionality of data the algorithm can support. Additional technical
assumptions and limitations regarding data dimensionality are discussed in Chapter I,
Methodology.

1.11. Implications

This thesis does not make the claim of returning an absolute determination of

what dimension a particular study is. Such a statement, if it is possible to prove, is not

within the scope of this thesis. There is as much art as there is science in coming to a
sound conclusion when performing PCA. Consider the outcome of this work as another
tool for the multivariate toolbox. In the output analysis summary (full description in
Chapter 1V, Results and Analysis), an estimate of dimensionality is given. A satisfactory
PCA assessment is dependent upon other considerations at play from which the analyst
must draw forth and distill into a meaningful solution.
1.12. Notation

Table 1.2 shows how variables, notation, and symbols are used in this thesis.
Attention was given to use to common statistical terminology. Cells containing - "

signify meaning or usage has no amplifying information.
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Symbol or
Abbreviation

Meaning

Table 1.2. Symbols and their meanings used in this thesis.

Usage

20M

Second-Order
Model

The linear regression least-squares fitted solution
algorithm for estimating Horn’s curve for random
data using a modified form of the lookup table T.

The number of observations in a dataset;
The number of rows in a matrix.

The number of variables in a dataset;
The number of columns in a matrix.

nxp

n by p

Size of a matrix.

(p, n)

Point (p, n)

Two dimensional placeholder representation of a
data

matrix in Cartesian plane coordinate space; a point
mapped into the lookup tables.

(P, n)

User-supplied
parameters

Pronounced "p prime, n prime" it is the point-of-
interest given as input to the solution algorithms.

Ci

Component number or index.

i.i.d.

Independent and identically distributed.

Inf

Infinite

Arithmetic representation of values too large to
represent in conventional floating-point format such
as division by zero (The MathWorks, 2012).

K1

Kaiser’s Criterion

A component extraction rule: keep all eigenvalues >
1.0. On graphs, occurs as a straight lineaty = 1.0
running the width of the horizontal axis

MEV

Mean Eigenvalue

Refers to the results of completing Horn’s
algorithm for random data. Usage is not applicable
to scree line results derived from sampled (real-
world) datasets.

n(')1 n(+)

Lower, upper (respectively) NN variables for n
chosen so that ™ <n'<n® are closest.

NaN

Not a number

A data type that results from operations having
undefined numerical results (The MathWorks,
2012).

NN

Upper & Lower
Nearest Neighbor

Given a (p’, n"), search T for values of p and n
immediately adjacent to the point-of-interest.
Concept extends to S and .

p(')1 p(+)

Lower, upper (respectively) NN variables for p
chosen so that p” < p'< p™ are closest.

(pxp)

Correlation matrix of p rows by p columns.

ROI

Region-of-Interest

The 2D area of mapped (preprocessed) MEV data
for select sizes and intervals of (p, n).

11




A user-defined total variance target to be explained

T - by full or partial selection of component
eigenvalues.

S Row and column | Rows containing p®, p information used for

truncated T nearest neighbor search refinement (child of T)
Shorthand reference to the matrix storing the
Lookup table mapped ROI data. In Appendix I, the actual

T matrix lookup table variable name is tablex (MEV) or
tablexbeta (20M).
Data matrix of n rows by p columns.

X i - In random data, X has random variables

(nxp) ~NID(0,1).

- In sampled data, X has empirical elements.
A four row, subset matrix of S used for the

Y Row truncated S | surrogate curves interpolation routine (grandchild
of T).

Xi - A variable in a linear regression model.

Xij - A matrix data element at row i and column j.

_ Lowercase (LC) Regression coefficient; subscript i indicates order of

b beta the coefficient.

ﬁ LC beta hat gﬂglt;lix of estimated regression coefficients in the

3 LC lambda Eigenvalue; an element of the hidden component
structure.

- Pronounced ™; indicates the arithmetic mean of the

Ai LC lambda bar . . X
eigenvalue at index i.
Pronounced "lambda hat"; indicates the

i, LC lambda hat approximation the linear regression second-order

model produces for the eigenvalue at index i (A;)

Uppercase sigma

Generic summation of elements x; from 1 to p.

Approximately

Close to but not exact in value (relational).

NID(p1.6) i Normally and independently distri?uted of
parameters mean | and variance 6°.

< Less than or equal i

- to

S Greater than or )

- equal to

+ Plus or minus -

_ . Denotes "is defined as." Not to be confused with

= Identical to

equality ("=")

12




* Not equal to -

A reserved or user-defined command, function, or
variable found in a MATLAB script (program).

bext MATLAB origin May also identify a script or data filename reference
when highlighting adds clarity among body text.
A small value approximating zero;

. LC epsilon significantly smaller than others in like comparison;

an error or residual (difference between predicted
and observed regression model values).

Integers 1, 2, 3, ..., . In the context of this thesis,
N The set of natural | the set does not include zero. To reinforce the

number restriction, 0 ¢ N is specified wherever N is used.

1.13. Chapter Summary

PCA is a multivariate analysis technique used to summarize total variance of a
dataset through discovery of hidden component structure. This makes analysis more
tractable as not all variables need to be retained for further analysis; the summarization of
the components enables us to find new dimensions in which to express the data. We
learned that components are formed from linear combinations of the original variables.
Each component represents an eigenvector and is ranked by the magnitude of the
corresponding eigenvalue. The orthogonal design of the components is such that the first
principal component assumes as much variance as possible, the second assumes as large a
portion of the remaining share as it can, and so on until the last component accounts for
the remaining small fraction.

We looked at an example of a loadings matrix which is a scaling (or correlation)
of the original variables with the components. We saw that the loadings matrix can be
unclear to decipher and that it is possible for too few or too many components to be
included in the analysis. Hence, there is a need to apply a stopping rule so that one

13




knows when the estimated dimensionality of the components has been determined.
Finally, key terms and definitions of principal components analysis were
introduced. The research objective is to review the literature for an accurate existing
visual analysis component extraction stopping rule and automate it. Automation will
help minimize analyst subjectivity during PCA. The finished algorithm should present an
easy-to-use interface for the analyst and provide an output analysis product with relevant

summary information.
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I1. Literature Review

2.1. Historical Perspectives

The purpose of this chapter is to provide relevant background information
regarding principal components visual analysis stopping rules. Because the methods
discussed are decades old yet still used largely as first developed, understanding the
scope of problems they were invented to solve and limitations in application provides
context to carry forward to later sections of the thesis.

Three such rules were found in the published literature. The reader may find the
discussion on test results of these various techniques enlightening — the findings of three
different papers under at least as many authors are shared — and the perils of
dimensionality assessments done poorly.

Lastly, we examine what a realistic expectation is for how large a multivariate
problem can be evaluated. We do this by surveying the sizes of data in published
researched or of datasets posted to public access websites.

2.1.1. A Note About Verbiage

Because the literature review is a walk through history, the vocabulary
encountered is a mix of old and new. Where possible, explanatory and supporting
graphics make use of the author’s word choices and, if available, the size of data used in
the article. Doing so not only makes it easier to relate a figure to the story in the
literature, but the authors, some of whom are no longer with us, are given a chance to
share their ideas again. Understanding how thoughts and concepts were developed leads

to deeper knowledge of the solutions offered. Therefore, the reader should expect to see
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apparently inconsistent word usage in different parts of the literature review. By the end
of this chapter, standard terminology is adopted.
2.2. Graphical PCA Techniques

A good place to start a literature review of principal components analysis (PCA)
is with the groundbreaking work done on the topic in the 1960s. The goal of PCA then
was the same as it is today: Given a multivariate data set, provide to the researcher a
reliable statistical tool to either (1) describe the variance shared among variables in a
study or (2) parsimoniously describe the total variance of those variables (Velicer, 1976).
The work done in those decades is fundamental to an understanding of how PCA is
carried out today. The theory and findings of early researchers remain quite relevant and
in use. Therefore, not only is a survey of legacy material justified, it should be done as
due diligence because it is in the original papers that the ground breaking authors share
the theory, application, limitations, and pitfalls of their accomplishments.

Multiple pioneers worked to build the PCA toolbox and a few names and
techniques stand out. Three stopping rules requiring visual analysis are (in chronological
order of first publication) Henry Kaiser’s eigenvalue > 1.0 criterion, John Horn’s curve,
and Raymond Cattell’s scree plot. All were developed before inexpensive and powerful
computers were commonplace.

2.2.1. Scree Line Definition

Fundamental in each rule is the use of a scree line. A scree line is simply a line
drawn in Cartesian coordinates (x-y plane) between each eigenvalue (the y-axis or

ordinate) as the eigenvalues are plotted over the integer index of the corresponding
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component (along the x-axis or abscissa). In this thesis, the scree line is always
represented by a blue line connected to large orange points when it is drawn in figures.
The description ‘scree’ was chosen (not by this author, but others) because of its
similarity to the rubble that falls off a cliff and slides to the bottom of the hill.

2.2.2. Latent Roots

For each of the methods surveyed, a "latent root" is equivalent to a component
(eigenvector) and the ordering sequence is determined by magnitude (eigenvalue; )).
Both are results of eigendecomposition of the correlation matrix R.

2.2.3. Kaiser’s Criterion

This is perhaps the most common stopping rule (Velicer, 1976) because it is the easiest to
apply. Found abbreviated as K1 in the literature (Zwick & Velicer, 1986), it states that
the number of factors to be retained is equal to the number of latent roots greater than one
in the observed correlation matrix (Kaiser, 1960). As a visual element in a scree line
graph, Kaiser’s criterion appears as a straight line at A = 1.0 running the length of the
horizontal axis over successive components C;. The rule is simple: Components above
the line are principal, the ones below the line are not. The rationale can be considered
from the perspective of what makes an effective executive summary: One would not
write a lengthier synopsis than the source is long.

Figure 2.1 shows an example of the rule being applied. Here, components C,, C,,
and C3 have eigenvalues greater than one and are above the K1 line — they would be
retained as principal components. The rest (C4 - Cy3) are below it (1 > A > 0) and would

be discarded as not significant to further principal components analysis.
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Kaiser's Criterion (K1) Example

5 T T T T T T T T T T T T T

Scree Line

451 L=10 ]

@ Eigenvalue
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Component (Cf)

Eigenvalue {3

Figure 2.1. Kaiser's criterion is always found at A = 1.0. Size of data shown is 178x13.
2.2.3.1. Considerations Regarding Kaiser’s Criterion
Kaiser's criterion performs in a binary manner; that is, the distinction is either
above or below A = 1.0. There might be subtleties that require closer inspection. Is there
a practical significant difference between A = 1.01 and A = 0.99? Horn has pointed out
K1fails to recognize sampling error due in part to the assumption that K1 operates on
population parameters assuming infinite sample size (Horn, 1965:181).

2.2.4. Horn’s Test

John L. Horn’s paper A Rationale and Test for The Number of Factors in Factor
Analysis (1965) describes what has come to be known as Horn’s test or Horn’s

procedure. Also called parallel analysis or PA (Zwick & Velicer, 1986) (Franklin,

Gibson, Robertson, Pohlmann, & Fralish, 1995), Horn begins with the following theory.
If we let k be large and if k sets of size n x p are drawn randomly from a population of

numbers independently and identically distributed (i.i.d.) according to the normal
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probability density function, the p x p matrix of correlation coefficients R will
approximate an identity matrix. Within R is a set of latent, positively-valued roots and
each root accounts for some amount of variance within each p inter-correlated variables.
As in K1, these latent roots are eigenvectors and are ranked according to the size of the
eigenvalues from eigendecomposition of R. What is new is Horn’s curve is formed from
the means of each ranked eigenvalue (amplification of the technical details is given in
Chapter I11). Should an infinite sample size be considered, all correlation coefficients
will equal 1.0. In an actual experiment, however, the researcher must contend with a

much smaller sample size and the accompanying sampling error and least-squares

Horn's Curve Example
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Figure 2.2. Horn’s curve example for a sampled dataset. The point p/2 is approximated
between Cg and C;. Size of data shown is 178x13.

‘bias’ (1965:180). If we consider these elements as simply ‘error,” then we can illustrate
how the combination of the two has inflated the correlation in R for the first p/2

components. In Figure 2.2, the scree line represents the data sample. By comparing its
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slope to that of the error induced curvature for the population (red line; Horn’s curve),
we can measure the difference between the two, adjust the analysis for it, and reach a
reasonable conclusion of how much of the variance is due to sampling error.

What Horn proposes is a method to separate signal from noise; in other words,
distinguish meaningful information in the data by adjusting for the amount of error
expected due to random chance. Therefore, an estimate of the level of noise in a sample
provides an indication which components should be considered for extraction. Expressed
graphically, Horn's curve estimates the pure error in the sample. Eigenvalues above the
curve contain useful information; eigenvalues below the curve (and especially beyond
p/2) are ‘noisy’ and should be discarded.

2.2.4.1. Considerations Regarding Horn’s Test

Horn’s test is not widely used because it requires a large amount of simulated data
to be generated for each n x p of interest (Monte Carlo simulation of repeated random
draws from a standard normal probability distribution). As such, it carries a data
footprint with it in the form of preprocessed data tables or requires lengthy on-the-fly
calculations. Monte Carlo simulations for large n x p can take a significant amount of
time to complete and if there is another stopping rule available, it is possible practitioners
would prefer to use the quicker solution. Because modern computers can make easy

work of the techniques Horn describes, this limitation can be mitigated.

2.2.5. Cattell’s Scree Plot

Introduced by Raymond B. Cattell (1966) the scree plot begins with a typical

scree line and then looks for breaks in the scree line slope. To perform the scree plot test,
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the scree line is first drawn. Any abrupt changes (or breaks) in slope along the scree line
are noted, particularly the first one to occur (i.e., closest to the vertical axis). Next, the
analyst traces a line segment using two points — the first at the last eigenvalue in the

sequence (at Cp), the second at the eigenvalue where the break in slope was noted — and

Scree Line w/Multiple Breaks
5 T T T T T T T T T T T T T
Scree Line
©  Eigenvalue []
n Break #1 ||
Break #2
Break #3 ||

Eigenvalue (2.

12 3 4 5 6 7 8 9 10 11 12 13
Component (Ci)

Figure 2.3. Scree plot illustrating three possible breaks in slope: Break #1 retains three
roots, Break #2 retains five roots, and Break #3 retains seven roots.

retains the eigenvalues above the traced line and discards the ones below it. Because
each eigenvalue represents one corresponding component, by corollary an estimation of
dimensionality has been made. Figure 2.3. illustrates the concept; the black, green, and
red lines are all drawn in the manner described.

Cattell admits there is an art to the effective use of this technique and the
application requires a thorough understanding of the process subtleties (1966:256-261).
When using this method, questions to ask are "Is there more than one break indicating

multi-modal data?", "How should the inherent changes in line inflection be evaluated?"
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Scree Line w/iNo Apparent Breaks
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Figure 2.4. Scree line with no apparent breaks in slope.

and "What if there are no apparent breaks in the scree line?"

In concluding his paper, Cattell states (p. 273) “There is no true thing as ‘the true
number of factors to extract’....Consequently, the cut-off point in extraction is best
decided by a conception of non-trivial common variance...” He then provides a series of
suggestions to consider, all of which are not applicable to visual analysis techniques so
they are excluded from further discussion (pp. 273-274).

2.2.5.1. Considerations Regarding Cattell’s Scree Plot

Cattell’s method is open to subjective interpretation on part of the user, something
we stated we wish to minimize in our candidate stopping rule. In Figure 2.3. we have the
case of multiple choices of breaks in the scree lines and in Figure 2.4. we have exactly
the opposite--no apparent break in slope at all. However, it is more likely in practice that
the situation encountered in Figure 2.3 will be found than of that in Figure 2.4. There is

not much ground to be gained by automating the scree plot; however, it will not be ruled
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out as a candidate at this time.
2.3. Objective Evaluations of Stopping Rules Accuracies

The next part of the literature review is a survey of three different journal articles,
each performing comparative tests of the stopping rules we have examined. Each article
tested many different stopping rules; however, our scope is limited to discussion of the
findings summarized in Table 2.1 for the three graphical techniques of interest to us.

2.3.1. Summary of Test Findings--Zwick and Velicer

In broad discussion, Zwick and Velicer determined that PA was overall the most
accurate method they tested; however, depending on the composition of the test data, PA
could perform slightly different with different sample sizes (1986:434).

They did not recommend K1 for PCA as it consistently overestimated the number
of major components. Velicer, in an earlier work, makes the statement that Kaiser’s
greater than unity rule and the scree test both have been criticized as either too subjective
or too arbitrary (Velicer, 1976:322). The criticism of K1 a decade later is stronger: “The
use of the K1 rule as the default value [in popular statistics software] is an explicit
endorsement, particularly to naive users...seems to guarantee that a large number of
incorrect findings will continue to be reported.” (Zwick & Velicer, 1986:439). Despite
positive aspects of the scree test, they did not recommend it, as the subjectivity in using it
invites concerns regarding the practitioner’s reliability. However, the scree may be
useful as an initial estimate or as a method complementary to PA. The major drawback
of using PA is the need to generate large sets of correlation matrices at the particular

combination of n x p (Zwick & Velicer, 1986:441).

23



Their chosen test method generated five sample correlation matrices from 48
known population correlation matrices (at each of two sample sizes). There were six
levels of component pattern complexity in the 48 correlation matrices. The approach was
similar to the "middle model™ of work published by Tucker et al. in 1969 (Zwick &
Velicer, 1986:435).

2.3.2. Summary of Test Findings--Jackson

Jackson did not include PA in his analyses; however, under discussion of the
scree plot he recognizes Horn’s 1965 paper and restates its methods but does not use it in
forming a solution (he uses Cattell’s 1966 procedure as outlined). Jackson found that K1
tended to overestimate the number of dimensions to retain and the scree plot tended to
consistently retain one too many components (1993:2211). Jackson’s test data consisted
of simulated data matrices of uniform correlation structure, patterned matrices of varying
correlation structure, and three ecological-based datasets of lake water samples.

2.3.3. Summary of Test Findings--Peres-Neto et al.

The most recent comparative study surveyed was published by Peres-Neto,
Jackson, and Somers (2005). In total, they compared 20 PCA methods, two of which are
of interest to this thesis (K1 and PA,; the scree plot was not part of the test group). Their
results suggest that irrespective of matrix size and type of distribution, PA was one of the
most accurate rules overall and called it "...[one of] the most promising rules for
component evaluation™ (p. 994). K1 performed poorly and was removed from
further inspection due to poor performance.

Their chosen test methodology included Monte Carlo protocol produced
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correlation matrices in 9 or 18 variables with known non-trivial components. Trivial
components were degenerate and carried only noise. In total, fourteen different designs
of correlation matrices were used.
2.4. Impact of Keeping The Wrong Number of Components: Part Il

In Chapter | we made an observation from the loadings matrix example (Table
1.1) that a need exists to balance summary with clarity. Which is the greater PCA
misstep: Retention of excessive trivial principal components (too many components) or
including only those that are unambiguously relevant to the analysis (too few
components)?

Cattell is of the opinion (1966:246, 275) that allowing some amount of variance
(error) into the analysis is acceptable and is even encouraged; this is accomplished by
permitting an extra component into the analysis. If the aim of the PCA is exploratory in
nature, this approach may be well-suited. Note that Cattell frames his discussion from a
factor analysis perspective. Interested readers are encouraged to reference his 1966 paper
The Scree Test for The Number of Factors paying particular attention to pages 245-247.

Zwick and Velicer give three factor desirability guidelines to consider when
determining an experimental goal (1986:432-433). They recommend (1) a component
have three significant (non-zero) loadings to be useful; (2) summarizing power greater
than 1.0; and (3) non-negative reliability (a reference to a test design statistic). Zwick
and Velicer categorize the interest components have to a researcher as:

- Major components have three or more substantial loadings and are probably

of interest;
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- Minor components have less than three substantial loadings but an eigen-
value greater than 1.0 or an eigenvalue less than 1.0 but with three or more
substantial loadings are probably of interest;

- Trivial components have an eigenvalue less than 1.0 and less than three
substantial loadings should not be retained.

Peres-Neto et al. investigated the matter and found that over extraction might not
be as serious a problem as under extraction (2005:994), the reason being earlier
components (those with larger eigenvalues) have higher amounts of variance. Thus, if
too many components are kept, one is likely to be retaining a small amount excess
variance instead of cutting out a large amount of useful information by under extracting.
2.5. Summary of Component Extraction Stopping Rules

We now have the information necessary to select a stopping rule candidate.
Based upon the observations and findings of the literature review, this author's collective
thoughts of what he has read and of what others have published and a summary of the
component extraction stopping rules accuracy tests, the following criteria will be used to
select a component extraction stopping methodology:

- Be a visual analysis method,;

- Reduce unnecessary subjectivity on behalf of the analyst; and

- Produce accurate dimensionality estimates.
Table 2.1 is a chart of the benefits and limitations of the stopping rules, how they
compared to each other in independent testing, and an overall assessment. From it we

can make a conclusion regarding which candidate to select for development.
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Table 2.1. Composite score decision matrix for stopping rule selection.

Conclusion

Test Method Candidates
Kaiser’s Criterion Horn’s Method Cattell’s Scree
(K1) (Parallel Analysis) Plot
Easiest to apply, Accounts for error | Flexible; analyst
® _ o« |Pro . .
S22 very popular in the sample can make choices
© S5 - - - -
£8E Inflexible due to the Requires large |_3055|bly_m|slead|ng
| Con amount of random | if scree line has
go/no-go results
data foreachnx p | complex slope
Zwick & Recommended; Recommended;
: Not recommended )
Velicer regarded as most esp. for experienced
2 for PCA . :
a (1986) accurate investigators
|_ -
© & |Jackson | Overestimates non- Overestimated
= £ AR . (Not evaluated) interpretable
BT (1993) trivial dimensions
= components
et Peres- Removed from
Q Neto et further testing due | One of the most
O (Not evaluated)
al. to poor accurate overall
(2005) performance
: . Software can Would require
Nothing to gain by . o
Assessment . provide demand for | practitioner
automating . ) T )
data ‘overhead training, experience

Of the stopping rules surveyed, Horn’s method offers the advantages of accurate

estimation, is not prone to subjective analysis, and has familiar key features of the other
methods (e.g., the scree line and reference to A = 1.0). Having this quality (i.e., familiar
features) was not part of the original research objective, but knowing now that K1 —
despite its misgivings — is a popular rule, incorporating the A = 1.0 element can provide
an additional benchmark without compromising the automation goal.

In order to make effective use of time processing random data for Horn’s test, we
need to first determine what sizes of data are found in published works. The size and

number of problems the algorithm can answer will be limited. Preliminary surveys (the
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technical challenge will be left for discussion in Chapter I11) provide insight on just how
large a dataset a ‘typical dataset’ might be.
2.6. Expected n x p of Research

While more data is usually a good thing, at some point too much becomes
overwhelming. It is not a research objective to provide Horn’s curve for every possible
experiment because there are infinite combinations of n x p. Instead, the effort is to work
smarter, not harder, and frame the n x p solution in terms of a region-of-interest (ROI); a
two-dimensional area defining practical and relevant bounds of both n and p.

During the literature review, each article and web search using a dataset of stated
n observations and p variables was recorded. (Note: Not all literature revealed their
sample sizes and member variables; some articles stated only summary findings.) To
adequately define the ROI, actual data was not of import, only the n x p dimensions. The
goal is to gain understanding of what data sizes are expected in the research community.
Of particular benefit was the Machine Learning Repository (University of California-
Irvine, 2007). The UCI website is replete with donated multivariate data and organizes
its database by field of research, data sizes, year the research was conducted, and purpose
(classification, regression, etc.). To narrow the problem scope, multivariate listings that
had at least one publication citation were logged. Using this criterion, 156 such datasets
were recorded. Within the published literature, 22 instances of listed data sizes were
found. Altogether, this represents 178 ‘samples’ of empirical research; Figure 2.5 shows

how they are clustered.
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o X 40° Size Range of 178 Published Studies Surveyed

*

Business

Comp Sci & Other Engr
Games

Life Sciences

Physical Sciences

m
T

Social Sciences
Other

s @ 08

B

o
o

Number of Observations (n)

D?}._‘Q‘

1
04 1 15 2 25 3 345
Number of Variables (p) x10°

Figure 2.5. Data sizes of the surveyed, published studies. Axes scales are in hundreds of
thousands.

The area in Figure 2.5 is too broad a range of n x p to work in; the amount of
sparsity present suggests that mega-sized datasets are not the norm. Note that the green
points, representing the computer science field, are very large in one or both dimensions
and represent most of the outliers. These datasets contain information such as web page
visits, online user surveys, and optical recognition of character symbols. It is not
unexpected that automated data collection routines and the sheer volume of Internet
activity results in such large datasets.

To reduce the outlier clutter, filtering is done on studies that number fewer than
10,000 observations. One hundred and forty three studies are in this range (Figure 2.6).
A reasonable portion from which to form the ROI appears in the red bordered area; this
area encompasses studies having 1 to 1,000 variables p and 1 to 7,000 observations n.

Defining the ROI in this manner captures 80.3% of the original 178 n x p ‘samples.’
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Figure 2.6. ROI bordered in red. Note clustered studies near the origin.
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Figure 2.7. Magnified view of studies clustered near the origin. Three points are
underdetermined (below the diagonal). Red ROI border is omitted for clarity.
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In Figure 2.7 a magnified view of the lower part of the ROI is presented; here we
can see the individual elements (studies) and how the pattern appears to be most
published multivariate work contains fewer than ~150 variables and 500 or so instances.

The number of studies in this group is 111 (62.4%).
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Figure 2.8. Close-up view of the origin. Three points are underdetermined (below the
diagonal). Red ROI border is omitted for clarity

The final snapshot of the ROI is taken by scaling the sample size down to n < 500.
Here we have a satisfactory view of the grouping near the origin at (0, 0). As shown in
Figure 2.8, the number of studies within this range are 75 (42.1% of the 178). At this
resolution there is enough detail to see that studies having underdetermined data are rare,
accounting for only 3 of 75 (0.4%) of the works noted. The matter of underdetermined
data (more variables than observations in a study) will be revisited in detail during
Chapter 111, Section 3.7. For now, it is sufficient to say underdetermined data presents

technical challenges and all such datasets will be excluded from analysis.
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2.7. Chapter Summary

In this chapter the literature was reviewed for visual analysis component

extraction stopping rules. Three candidates were found:

- Kaiser’s criterion (K1);

- Cattell’s scree plot; and

- Horn’s test.
Each test has its own drawback design limitation. In particular, Horn’s test requires a
large amount of random data evaluation before it can provide a dimensionality estimate
for a sampled data set. Graphically, Horn’s procedure appears to incorporate features of
both the scree plot and K1.

To gauge how well each candidate performs in determining the number of
principal components, three published articles on comparative evaluation of stopping
rules were reviewed. These papers put each stopping rule under test using carefully
constructed simulation data of which the dimensionality was predetermined. Horn’s test
received high marks for being one of the most accurate methods tested. K1 tended to
overestimate the number of principal components (that is, ‘noisy’ components with little
substantive value were included in the dimensionality determination). The scree plot was
accurate in its dimensionality estimates as long as the practitioner was experienced with
the technique. The summary observations, findings, and candidate selections are listed in
Table 2.1.

We approached the question of how many factors to retain once more (first

presented in Chapter 1), this time reviewing what other authors had found. Most stated it
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is better to include too many components rather than too few, as leaving components out
may discard useful information (i.e., variance) in the eigenvalues.

At the end of the stopping rules survey, it was apparent that Horn’s test is the

smart choice for algorithm development and has been selected as our candidate. The data

requirements needed to run the routine had to be addressed, so a survey of the published
literature (both printed and found in the UCI Internet database) was conducted to
determine what sizes of n x p are likely to be found in experimental studies. The ROI
was identified and the data processing budget was centered on an area encompassing
roughly 1 to 1,000 variables p and 1 to 7,000 observations n. We want the algorithm to
be of practical utility to multivariate practitioners and mapping of the ROI will build-in

value.
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I11. Methodology

3.1. Chapter Overview

This chapter discusses the methodology used for completion of this thesis.
Starting with Horn’s ideas in A Rationale and Test for The Number of Factors in Factor
Analysis (1965), we develop the ideas and thought processes and move toward a
functioning MATLAB algorithm.

We start the journey with the thought we have some sense of direction but are not
completely sure what we will find. Horn gave us all the parts of how and why the
procedure works. The exact process — the writing of the algorithm — does not contain any
surprises but it does require some careful thought about how to set the stage. These next
few paragraphs will discuss the integration of the parts to a whole and why decisions
have the outcomes that they do. Since we are exploring, taking time to visually see what
is happening in the data is often more revealing than staring at a column of numbers —
visual evidence is often quite compelling. The theory and rationale as a whole are first
introduced and as we progress, supporting concepts are visited:

- Monte Carlo simulation (MCS);

- Scree lines characteristics;

- Refinement of the region-of-interest (ROI);

- Lookup table characteristics;

- Linear interpolation and nearest neighbors (NN) search;
- Linear regression second-order model; and

- Sampled data algorithm.
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At chapter end preliminary results will be demonstrated as well as side-by-side

comparisons of the two solution approaches (a mean eigenvalue routine and a linear

regression second-order model).

3.1.1. Mean Eigenvalue (MEV) Solution

The first solution strategy is a pre-processed table of data capable of producing an
on-the-fly estimation of Horn’s curve. In Section 2.6 we observed that not every possible
n X p combination is of interest to us. Therefore, an interpolating function is needed to
find intermediate n x p solutions that fall within the ROI but for which we do not have
specific information for. MEV is the most direct route to a solution but it is the most
burdened with the data overhead it requires. The MEV solution will be developed first.

3.1.2. Linear Regression Second-Order Model (20M) Solution

The second approach is to build a 20M model on the framework of the MEV
solution. Depending on the model coefficients, a second-order polynomial can produce a
curve ranging from a parabola to a nearly straight line (we assume the quadratic
coefficient is not zero; otherwise, we would choose a first-order model). We maintain the
MEV constraints on n x p data selection plus the requirement that Horn’s curve be ‘well-
behaved’ (i.e., it has predictable properties for all points within the ROI). The response
function that captures this requirement is strictly monotonically decreasing.

3.2. Motivation

As was shown in the literature review, Horn’s technique is generally regarded as

producing an accurate assessment of component dimensionality. Its drawback is the need

to generate large amounts of random, normally distributed data. In the decades since
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Horn first described the technique, advances in computer resources have made it possible
to automate a fast running algorithm and computer memory and hard drive storage is
abundant. The impact of a large data footprint can be minimized.
3.3. Theory of Horn’s Test

We begin by letting n = sample size, p = number of variables, and k = a large
number of Monte Carlo simulation (MCYS) iterations. The random variable distribution is
configured standard normal (population parameters mean p = 0 and variance o° = 1)
within the MCS. If I, is the p x p identity matrix, the individual elements x;; of random
data matrix X are

x; ~ NID(0, 1,) where {?6{1’2"“”_1’ " (3.1)
je{L2,...p-1 p}

Upon each increment of k, a new data matrix X of random variables is produced. It
should be emphasized that each element in X is created i.i.d. during each iteration. There
is no recycling of data between iterations.

3.3.1. Correlation of The Random Data

The correlation operator on X is consistent with Horn's methodology
(1965:179-182) and by evaluating correlation results scaling difficulties and nonsensical

units of measure are eliminated. The eigenvalues A, are extracted from the resultant

p
correlation matrix R | by determining the linear combination Zaici =0 of the
i=1

variables C,,C,,...,C, ;,C  having maximum sample variance, rank-ordered from largest

to smallest (by index i:i=1, 2, ..., p-1, p), and then averaged by index. In notation, the
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steps are:

X.., —> Correlation operationson X=>R (3.2)

R,., — Eigenvalue extraction and sorting =4, >4, >---> 4, >4, (3.3)
k

D" 4 —> Sum within each sorted index i (3.4)

j=1

and finally the average eigenvalues are sorted and summed by index

MEVEX:% izizk“ ,---,izpl,zk: p} (3.5

j=1 j=1
and stored in vector format for further use. The symbol Z, ("lambda bar sub i"") denotes

the MEV for component i where i €{1,2,...,p-1, p}. Vector &, Equation (3.5), contains
all the ordinate information for completing Horn’s curve.

By rank-ordering the eigenvalues from highest to lowest, summing within each
rank (index), and then averaging the indexes, a picture of how much total, or common,
variance each eigenvector represents emerges. A natural next step is to use the
mathematical properties of the components to study the behavior of the original variables
expressed in new combinations of each other.

In contrast to sampling theory not all eigenvalues are equal in the real-world but

they all sum to the number of variables in R .

Zp:ﬂ,,:/11+/12+}1+...+/1p_1+/1p:p (3.6)

This is an interesting property regarding eigenvalues of the correlation matrix — a total of

p eigenvalues, equal to the number of columns (each column representing one variable)
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in R — collectively sum to p. In PCA, we take advantage of this relationship in two ways.
One, it iis straightforward to determine the fraction of total variance the i component

explains from the equation

%,iSp:i,peN(OeN) 3.7

By extension, we reach advantage two: A target variance T can be chosen by the

practitioner and approximated by selecting a full or partial sum of j eigenvalues

1k

%i& (3.8)

i=1

j<p:i,j,peN(0¢N)
0<T <1

Note that while T may be any value, the number of eigenvalues is discrete so an exact
summation to T is not likely; T is more properly used as a threshold. The art of target
variance application should be done before the dimensionality assessment. How much
variance the researcher wishes to summarize should be kept in sight of determining how
many principal components to retain as the two are directly linked.

3.3.2. Covariance Instead of Correlation

PCA can be performed using the covariance operator; however, the sample
variables should be similar sized and of consistent measurement categories. As was
previously stated, choosing to work with the correlation matrix eliminates unusual units
of measure that may not be apparent without dimensional analysis of the variables.
Hence, the algorithm born in this thesis is applicable only to summary statistics from
correlation operations. Readers proficient in MATLAB coding and who require the use
of variance-covariance operations are encouraged to make the necessary modifications to

the algorithm (located in Appendix II).
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3.4. Monte Carlo Simulation

In his paper, Horn mentions "...sets of very large samples of size...drawn
independently from a normally distributed population of random numbers..." and
"...Insofar as [the iterations] are reasonably large, these averages give R, [Figure 3.4; the
curve of random data for large observations]." (1965:179; 182). An appropriate routine
to the large random samples requirement is Monte Carlo simulation (MCS), the technique
of using repeated sampling to determine properties or behavior of some phenomenon.
Formally, Sawilowsky (2003:219), refers to MCS as “... an explicit reference to the use
of repetition as a method of discovery of the long run outcome of an event.”

Given that the parameter of interest 4 is the magnitude of each rank-ordered
component (the mean eigenvalues ﬂ: wherei=12,...,p), we let X be a discrete random

vector and the parameter of interest the some specified function h is
6 =E[h(X)] =D _h(x;)P{X=x} (3.9)
j=1

When h(x;) is difficult to evaluate, the use of random numbers can be used to generate a

partial sequence of i.i.d. random vectors X, Xa,...,X, having the mass function P{X =

x}, j >1 (Ross, 2007:247-248). The strong law of large numbers yields
k—00 4=

|imi@:9 (3.10)

Therefore, for large k the average approximates A . The strong law of large numbers
guarantees the approximation to the parameter as k, the number of iterations, becomes

large. Further details regarding choosing k are discussed in Sections 3.4.2 and 3.12.2.
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3.4.1. Random Number Generator

MATLAB contains varied (pseudo)random number generator functions (PRNG)
and user-adjustable parameters. MATLAB version 7.12.0.0635 (release R2011a) was
used for all scripting. Prior to Version 7.7, the seeding of the random number generator
was somewhat confusing and at risk of being misapplied (The MathWorks, 2012).
Because of this, the rng function was introduced. By setting rng (z), where z is non-
negative integer, the programmer controls the stream used by the random number
generator functions — these functions include the normrnd call shown in Figure 3.3.

In all instances, the PRNG is set arbitrarily to stream zero when the Horn’s test
algorithm begins by the scripted line rng (0), returning the PRNG to its default setting
of using the Mersenne twister algorithm; its period is 2'%**’-1) (Matsumoto, 2011).
Resetting the PRNG allows control over duplication of results should similar batches of
data be required. Once the script points to rng (0) it is not called again until after
execution halts and before a new round of MCS begins — it is never reset when the
system state is busy.

Readers wishing to adapt this routine to their use should determine what version
of MATLAB they are using. If rng causes execution halts (errors), legacy random
number generator functions will be required (such as rand and randn). Another
consideration: Code that ‘flip-flops’ between current and legacy random number syntax
should reset the random number state using the command rng default. For more
information, see the MATLAB User Guide, specifically the documents Updating Your

Random Number Generator Syntax and Controlling Random Number Generation.
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3.4.2. The Importance of Selecting Sufficient Monte Carlo Iterations

There are two reasons a sufficiently large value of k is not only desired, but

critical to successful algorithm implementation. The first is there has to be enough

opportunity for the means of the eigenvalues (/T ) to approximate the steady state at 6;.

Steady state is a somewhat of a misnomer because Horn’s procedure does not require
time series data nor does it experience a warm-up transient period in the simulation.
Larger values of k move to convergence at the true mean of each eigenvalue, yielding
increased precision at the cost of longer processing time. Smaller k requires less

computation effort and, considering the amount of random data that must be found, is

desirable but not so at the expense of inaccurate results for 1. A balance of timeliness
and accuracy is required.

Exploratory runs with varying levels of k show an exploitable trend. Figure 3.1
illustrates the convergence of the MEVs as k is increased. Panel A shows k from 10 to
10,000. Note k =10 (magenta line) does not band tightly with the others; it is a poorer
fit. Visually, it appears k = 100 is a good balance between convergence and computation
effort. Panel B shows the chosen k = 100 compared to k = 10,000; the fit is satisfactory.
Because of these reasons (fit vs. effort), k = 100 is used in the algorithm found in Figure

3.3 for the remaining thesis work.
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A MCS Convergence of Varying k for Size (178x13) B Smoothness Comparison of k=100 & k= 10,000 for Size (178x13)
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Figure 3.1. Different values for the number of Monte Carlo simulation iterations on a
common size of random data.

3.5. Flowchart of Horn’s Algorithm for Random Data

It may be of value to view the algorithm from a function perspective; that is, once
the input parameters n, p, and k are defined, everything is self-contained to generate in-
turn an output for the next step of the solution. The flowchart and pseudo code shown in
Figure 3.2 were easily scripted into a MATLAB .m file. The script shown in Figure 3.3
was written as a function because of its specialized purpose. Figure 3.3 is an executable
MATLAB .m file — the inputs are values for p, n, and k — for Equations (3.1) - (3.5). The
resultant vector £EigenMean is applied in developing plots, graphs, the lookup table
values, second-order model coefficients. It encapsulates the information needed to

produce an estimation of Horn’s curve.
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(n, p, k)

passed In Passed Back
............................................................................................................. I
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rng(e) i
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S ;

Figure 3.2. Flowchart diagram of the MATLAB algorithm for Horn'’s test on random
data. The red dashed border indicates modular functionality.
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gx** A+ **Horn's Procedure using RANDOM DATA in simple MATLAB script.****&&&skk

o)

$******Does not contain plotting or error checking routines.*****xkxkxkkxskx

o

5

$Variables:
$p = # of variables; set through interactive input or hard coded
$n = # of observations; set through interactive input or hard coded
%k = # of Monte Carlo simulation iterations
%$X = matrix of random variables ~NID(0,1)
$V = eigenvectors returned from 'eig' call. Used for component loading
% and confirmatory testing. Not needed for Horn's curve
= eigenvalues of R returned from 'eig' call. Essentiall!

o
g

o\

>Note 1: Sampled data is not averaged; it is what it is

%$->Note 2: X must lead to invertible R for 'eig' to complete

Therefore, X might need to be manually conditioned

for multicollinearity, NaN, linear dependence, etc

$initialize variables/starting conditions

EigenMean = diag(zeros(p))'; $preallocate array of mean eigenvalues
rng (0) ; %$seed the random number generator
%$loop runs Monte Carlo sim (random data draws) on the chosen size data

for 1 = 1:k

o° o

o

X = normrnd(0,1,n,p); $random data matrix X size n x p
%$elements of X are iid ~N(0,1)
R = corr(X); %Correlation matrix of X
[V,D] = eig(R); % (V) eigenvectors, (D) eigenvalues
D = sort(diag (D), 'descend')"'; %sort 'eig' result from large to small
EigenMean = EigenMean + D; $Add each eigenvalue by array index
end

%**‘k‘k******‘k‘k******‘k‘k*******‘k******Result*****‘k‘k******‘k‘k*******‘k********‘k*

o)

$'EigenMean' is the vector of eigenvalue means over all k iterations.
EigenMean = (EigenMean.* (1/k));
%**********************~k**************************************************
°

°

%end of program.

Figure 3.3. Horn’s test algorithm for random data in MATLAB script.

3.6. Characteristics of Scree Lines

Now that we have a working algorithm, we are motivated to pause and perform a
progress check. Horn provided a figure in his paper (1965:184) to illustrate parallel
analysis in action. It is reproduced here in Figure 3.4 with some embellishments to
highlight the key features. Curve A (blue circle) is the scree line from actual data, curve
R, (red circle) is from the idealized random data, and the intersection of the curves (green
rectangle) indicates estimated component dimensionality. Because we do not have the

original data set, only the n x p size, it is not possible to reproduce curve A. However, it
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FIGURE 2
LATENT ROOTS FOR REAL AND RANDOM DATA
123 A = Sample curve (N=297)

Ru = Random curve (N=297)
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Figure 3.4. Horn’s original figure of the theory put into application.
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Figure 3.5. Reproduction of Horn’s illustration, this time with varying observations n.
Notice the convergence of rotation in the slope towards unity.

is possible to produce curve R, simply by knowing the data size. We do this in the upper
left subplot of Figure 3.5. To help visualize the concept that as n approaches infinity the

slope of the ideal curve goes to zero at unity, we can fix p at a particular value and
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observe what happens as we increase n. We can see here that the differences between
the components becomes less and less as observations increase; this is due to an
equalizing of total variance among the components. The dominant components ‘lose’ a
percentage of variance, the smaller ones ‘gain’ variance. In theory, if the sample size

were taken to infinity, they will all account for an equal portion of the total variance.

Rotation of Horn's Curve As Observations Increase (p =5)

T T T T T

3k N

25¢ Min Observations=5

—— 1.0 Reference Line L

0.5} Max Observations=7000

Component (Cf)

Figure 3.6. Fixed p=>5 and varying n through 220 increments from 5 to 7,000.

To further our understanding Figure 3.6 is introduced, illustrating the progression
of the slope towards zero as the variable is held fixed. This time, we observe a small
number of variables (p = 5) and observe the rotation behavior in both speed of
convergence (large jumps between ordinate axis values — the mean eigenvalues — indicate
rapid movement; no gap shows very little change in slope). Notice that the density of
curves is closest to the 1.0 reference line. The ratio of n to p varies from 1:1 at the start
of the sequence to 1400:1 when the 7,000 maximum observations are reached.

If we repeat the process, this time for using Horn’s example of p = 65, we see
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Rotation of Horn's Curve As Observations Increase (p = 65)

Min Observations=65
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| Max Obsenvations=7000

1 17 33 49 65
Component (Cr)

Figure 3.7. Fixed p=65 and varying n through 208 increments from 65 to 7,000.

Rotation of Horn's Curve As Observations Increase (p = 500)

Min Observations=500

— 1.0 Reference Line

A

0.5F Max Observations=7000

250 375 500
Component (C,,)

1 125

Figure 3.8. Fixed p=500 and varying n through 121 increments from 500 to 7,000.
similar results (Figure 3.7) without large jumps towards zero slope and the convergence
towards unity is not as tight. The starting n:p ratio is 1:1; at completion it is 108:1.

The final graphic (Figure 3.8) in this group is p = 500 variables plotted against the
same maximum number of rotations. We observe no unexpected trends.
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The jump size is no longer discernible and the rotations are exhausted further away from
the reference line. The starting n:p ratio is 1:1 and at completion is just 14:1.
3.7. Rationale for Excluding Underdetermined Data

When there are more variables (columns) than observations (rows) in a matrix
full rank is not possible. If p > n at least one of the eigenvalues is zero and the
determinant of R = 0. This case is called underdetermined. Figure 3.9 is a comparison of
curves for underdetermined (p > n), overdetermined (or adequate; p < n), and minimum

(n = p) fitted data.

Sample of Horn's Curves for Various n:p Ratios (p = 20)

4.5 >— Underdetermined Data (p > n)
ol —6&— Adequate Fit Data(p<n)
i —&— Minimum Fit (p = n)
35 — 1.0 Reference Line
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2 g
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Figure 3.9. Comparison of underdetermined, adequate, and minimum fit random curves.
In this example, Components 13-20 have trivial mean eigenvalues (red ellipse) when
n=12.

In Figure 3.9 we see an example of each type of these curves. Notice that the last eight
MEVs equal zero for the underdetermined data (orange curve, lower right corner). This
is not a random event; the initial conditions for the underdetermined data are p = 20 and

n =12.
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There are three reasons to be concerned with inclusion of underdetermined data into the
lookup table.
(1) We desire useful components for dimensionality reduction. If we have
multiple zero-valued components, information has already been lost
before starting PCA.

(2) MEVs do not meet our criterion that the curve be strictly monotonically

decreasing 4, > 4, >...> A, > A, in the interval [CI,CZ,...,Cp_l,Cp]
because we find3C, =0 Vi:ie{p>n}. Inthe sample of curves shown

in Figure 3.9, components C, =C, =...=C, =C,, =0 and therefore the

requirement is violated.
(3) To capitalize on what is useful in terms of relevant multivariate research,
only data of practical value will be pre-processed into the lookup table.
We observed in Section 2.6 that p > n sized datasets are uncommon in
the published datasets.
Therefore, because of these reasons, p > n sizes are excluded from the analysis.
3.8. Flowchart of Horn’s Test for Sampled Data
The algorithm for sampled data is well-represented in a flowchart format. In
sampled data, n x p are defined by X and random data draws of k are not required.
Provided X is adequately conditioned for correlation and R is invertible, this algorithm
will find the eigenvalues. Error checking the input X is not shown here; it takes place
inside the main program directing input/output and all interactions with the user. The red

dashed border signifies the code is modular in design and can be written as a function or
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placed inside the main program. Note that while the code is complete and standalone, the
intent is for it to work in concert with pre-processed random data (refer to the flowchart
for random data in Figure 3.2 and the MATLAB script in Figure 3.3). The two
algorithms — random data and sampled data — are called consecutively and they have an
equal role in producing a comprehensive solution. While each is algebraically
independent, the interweaving of the two is required for a full assessment of how many

components to extract for PCA of the problem presented.

Eigenvalue
Results
Passed Back

START >

Data Matrix X
Passed In

T~

< Store Results in

N N

Correlation Matrix Vector
R=corr(X) Eigen-
Empirical
Sort Into Indices
Eigenvalue (Largest-to-
Decomposition Smallest)
[V,D]=eig(R) D=sort(diag(D)
,’descend”’)

Figure 3.10. Flowchart diagram of MATLAB script for Horn'’s test on sampled data.
The red dashed border indicates modular functionality.
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gx*x*x*x**Horn's Procedure for SAMPLED DATA in simple MATLAB script.******xxxx
gx*F*F***Does not contain plotting or error checking routines.****xxxxxxxxxxx
$initialize variables/starting conditions

%X = matrix of study data; observations in rows, variables in columns

% Must be preloaded in memory or from command "load(filename, '-.mat)"
% If you use other data storage variables, replace the 'X' in

% "R = corr(X)" with your data variable

%V = eigenvectors returned from 'eig' call. Used for component loading

% and confirmatory testing. Not needed for Horn's curve.

$D = eigenvalues of R returned from 'eig' call. Essentiall!

$->Note 1: Sampled data is not averaged; it is what it is
%$->Note 2: X--the data matrix--must lead to invertible R for 'eig' to

% complete. Therefore, X might need to be manually conditioned
% for multicollinearity, NaN, linear dependence, etc.

R = corr (X); $Correlation matrix of sampled X
[V,D] = eig(R); % (V) eigenvectors, (D) eigenvalues

%*******************‘k**************Result*********************************

'sev' is the vector of sample data eigenvalues for all components

sev = sort(diag (D), '"descend')'; %$sort result D large to small
fs*************************************************************************

5

$end of program.

Figure 3.11. Horn’s test algorithm in MATLAB script for sampled data.

The reader should note that Figure 3.11 contains code applicable to sample data only.
Unlike the flowchart of Figure 3.2 and code in Figure 3.3, there is no looping through
MCS draws and averaging the eigenvalues by index. Real-world data will likely need to
be conditioned — MATLAB can store and manipulate missing or
incomplete matrix entries but such data (NaN and Inf) is indigestible to the correlation
operator and toxic to the e ig function. This code is compact enough to remain in the
main script — there is no dedicated function for it.
3.9. Interpolation Lookup Table

In Section 2.6 we examined the need for a suitable region-of-interest (ROI) from
which to define the sizes of data we wish to evaluate. We did this to meet practical

limitations but also to observe the stated objective of parsimonious implementation. The
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most direct approach to a solution is to perform Horn’s procedure for every point in the
ROI; however, not only is the n x p space large, MCS of many successive iterations may
take hours to complete for just one point (p, n). We are now motivated to ask "How
much of the ROI data do we need to pre-process? Is there a way to achieve satisfactory
results without preprocessing the MEVs for every inclusive point (p, n) in the ROI?"

In turns out that with careful selection of the distance of intervals between
adjacent coordinates (p, n) we can compute (or map) a fraction of the points into a

database lookup table and then use the method of linear interpolation to instantaneously

estimate the unknown points on an as-needed basis (say from a user-supplied input).
Constructing a meshed ROI lightens the data density without negatively impacting the
accuracy of the solution. (We will see that the lookup table for a gridded ROI is still
bulky and took longer than eight days of dedicated processing time to complete.)

The lookup table has several elements that must come together: Lookup

table dimensions, granularity of the mapped (p, n) space, searching of nearest neighbors

and creation of surrogate curves, and piecewise linear interpolation of the solution from
nearest neighbors. Each of these concepts is explored in detail in the following sections.

3.9.1. Dimensions of Data Matching and Search Configurations

Data matching refers to locating (p’, n) in the lookup table; both, one, or neither
value may be already mapped (i.e., found in a header column for a row of pre-processed
MEVs). How the algorithm handles the search is not complex, but it is exhaustive in that
the correct subset of data from the lookup table needs to be isolated prior to interpolation.

The matter of mapping each (p, n) in the ROI is self-defeating because we end up
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with an oversized database at the expense of considerable upfront CPU time —an
impractical solution. What is needed is a database of manageable size coupled with a fast
search algorithm providing accurate data to the interpolating function that in return, gives
a reliable estimation of Horn’s curve.

To orient understanding of how the lookup table search routine categorizes a user-
selected point of interest (p’, n’), there are five cases that are possible for a given (p’, n")
input. As shown in Table 3.1 they are:

(1) neither p’ nor n’ are in the table;
(2) p'isin the table, n"is not;

(3) p’is not in the table, n'is;

(4) p’ and n’ are both in the table; and

(5) Either one is or both (p’, n) are out of range of the table.

Table 3.1. Point-of-interest (p', n') input cases and search method sections.

Case
p' n' Number Section(s)
No direct match No direct match 1 3.10.2, 3.10.3
Direct match No direct match 2 3.10.1, 3.10.2, 3.10.3
No direct match Direct match 3 3.10.1, 3.10.2, 3.10.3
Direct match Direct match 4 3.10.1, 3.10.2, 3.10.3
Either or both out of mapped data bounds 5 N/A — Invalid

3.9.2. Lookup Table Granularity

In Section 3.6 some examples of what happens to the slope of Horn’s curve as the
number of observations n increases for a fixed variable p were demonstrated. To
differentiate the progressive decrease in slope as n increases, a color scheme shifting
from deep blue to dark red as was chosen. Dark red indicates a Horn’s curve with slope
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close to zero (that is, they lie close to the horizontal at A = 1.0). Deep blue signifies the
number of observations n is approximately equal to the number of variables p.

The takeaway from Figures 3.6 - 3.8 is after some sufficiently large value of n the
change in slope at (p, n) does not differ significantly from that of (p, n+1). Perhaps
taking n at some larger interval (n+10, for example) will save processing time, decrease
storage density, all with no loss of accurately estimating Horn's curve for (p, n).

At this point some exploratory runs for a suitable range of granularity are in order.
There are two dimensions (p, n) in the data but three possible decisions because the
interaction of p and n need to be considered. In other words, a solution (granularity
interval) that works well in one dimension may not work well in the other and the power
of the (p, n) interaction to provide accurate Horn’s curve estimation for (p’, n") should be
significantly high enough that misleading or inconclusive results are not presented.
Fortunately, it turns out that thoughtful selection of granularity in the two dimensions
negates concern regarding the combined interaction.

The behavior of Horn’s curve as it rotates on A = 1.0 about p/2 has already been
discussed, so we should expect to see it again in the exploratory runs (and we do). What
is new is how many observations each variable requires to force the slope of Horn’s
curve to near zero; apparently, there is a ratio of n/p that will give us some idea of ‘how
much n’ for ‘how much p’ we need if we have a target slope in mind. Recall that the
sampling theory behind Horn’s procedure is infinite size of n and k is needed to reach
zero slope; that is, all eigenvalues are 1.0 in the population (n being the dominant

parameter). That statement is not being tested here; the goal is be ‘good enough’ in
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practical application for the curve estimation.

In Figure 3.12, a total of four histograms are used to present individual views of
three values of p (5, 250, and 500) and the collective set of all p variables. The
histograms chart the frequency of movement of the first MEV as increasing observations
are put into the EigenMean algorithm and p is held stationary. The rationale behind
this analysis is the first eigenvalue is always the largest and it undergoes the greatest
change in position as the curve sweeps towards the reference line at 1.0. What the curve
shows is, for the selected size of the lookup table, increasing values of p ‘push back’ from
1.0. For instance, when p =5 (upper left subplot in Figure 3.12), approximately 150 of
the 220 observation inputs (68%) are nearly equal to one (the large dark red bar). When

we look at p = 250, we see the minimum value reached is near 1.5 and when p = 500, the
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Figure 3.12. Histogram of curve convergence towards 1.0 for various values of p. Dark
red indicates curves near A = 1.0.
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minimum value is close to 1.6. For all variables, the mode is near 1.8. The visual
analysis from this perspective is in agreement with the individual Horn’s curve
evaluations; mean eigenvalues in the range of (1, 1.8] are reached using the maximum
available observation size of n = 7000.

The other dimension (number of variables) is best served with a consistent step
size granularity. The number of variables sets the width of the curve; there is no
maximum p leading to some change in characteristic of the curve slope. We also know
that some number of the eigenvalues will lead to a determination of principal
components; therefore, there is more to give up in choosing too high a granularity in the
variables than by spending time mapping the MEVs for n x p random data at finer
intervals. If the interval for p is too wide, we could lose clarity on the number of
principal components because interpolation truncates the number of p components to the
lowest nearest neighbor variable found (see p” and nn1p in Table 3.4). Therefore, it is
advantageous to trade processing time for mapping accuracy when it comes to p.

With all things existing and planned considered — desired size of the table,
random data pre-processing time, curve convergence to A = 1.0 as observations increase,
potential search configurations, and limiting width of the horizontal axis — it was
determined to fix granularity for p at an increment of five variables. For the
observations, the convergence nature of the curve showed some benefit that as the
observations increase, we can move from a finer granularity to a coarser one. Also, we
observed that many studies take place fairly close to the origin and along the vertical axis.

It is beneficial, without loss of resolution, to increment as shown in Table 3.2.
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Table 3.2. Granularity intervals in the lookup table.

p n Granularity
5-1000 | 5-500 5
510-1000 10
1050-2000 50
2100-7000 100

There is a balance to observe in storage size of the lookup table vs. processing
power on the (p’, n) of interest on the fly. Earlier in this section the choice of iteration
step size was discussed for iterations in the MCS. A similar need exists in determining
how the large the grid should be in the (p, n) ROI. Recall that, based upon the published
178 data sizes surveyed during the literature review, 138 (76%) were covered in the 1 <n

< 7,000 observations and 1 <p < 1,000 (respecting the constraint n = p).

Lookup Table Entries & Granularities
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Figure 3.13. Two dimensional representation of the lookup table range. A total of
26,650 rows and 1002 columns (78 megabytes of information) are in the database.
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Based upon these factors, the bounded region is (5 < p < 1000) in increments of
five variables and (5 <n < 7000) in varying intervals of observations. The ROI is shown
in Figure 3.13; changes in color depth correspond to changing granularities. Note that
there is too much saturation to distinguish between the granularities of 5 (5 <n < 500)
and 10 (510 <n <1000). Please refer to Figure 2.6 for a wide angle view of the mapped
area and the types and density of published studies that ‘reside’ there.

3.9.3. Lookup Table Format

Populating the lookup table (referring to it as T for convenience) with the desired
range of data on the stated granularities was a matter of running the random data
algorithm in those intervals. At completion, T had grown to 26,650 rows and 1,002
columns. The two additional columns are incorporated into T for bookkeeping; they
identify what (p, n) coordinate pair a row of MEVs belongs to. In the lookup table, the
lowest numbered rows have the highest variables — the variables p are sorted in
descending order. For the number of observations, the opposite is true: they are sorted in
ascending order. To make T column equivalent, zeros are added in the rows beyond the

number of columns filled by MEV data. The zeros are used as “filler’ because the

number of A entries equals the number of variables (which change throughout T.)

A sample of this structure is given in Table 3.3. In the rows that contain p =5 in
the first column (p) there are 0’s in columns 4, through 4,,,,. The pattern is similar for p
=500; columns for A, through A,,,,have ‘0’ entries.

Also visible in Table 3.3 is the descending order in the first column (p; high-to-

low) and ascending order arrangement in the second column (n; low-to-high). This
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schema was adopted to put the zero cells to the right side and to the bottom of the matrix.
Therefore, T is largely sparse. Obviously there is a need to search the rows of T for the

closest match to (p’, n’). A nearest neighbors search algorithm completes this task.

Table 3.3. Compressed sample of entries from the lookup table T. Columns extend to
Ao - Diagonal dots indicate sparse columns. Header columns are p and n.

p n ﬂ‘l /IZ ﬂ’S 14 A’S A’G s /1995 1996 /1997 1998 /1999 ﬂ’lOOO
1000 | 1005 | 3.906 | 3.901 | 3.863 | 3.829 3.801 3774 | - 1.28e-4 | 9.37e-5 | 6.56e-5 | 4.09e-5 [ 2.16e-5 | 8.71e-6
1000 ) : : : : : : : : : : : : : :
1000 | 7000 | 1.891 | 1.879 | 1.863 [ 1.855 1.849 1843 | - 0.405 0.402 0.400 0.397 0.394 0.390

995 995 | 3.964 | 3.992 | 3.875 | 3.84 3.809 3.782 | --- | 6.8%-18 0 0 0 0 0

500 | 500 [ 3.931 | 3.852 | 3.791 | 3739 | 3694 | 3.653
500 | : : : : : :
500 | 7000 | 1509 | 1.586 | 1576 | 1568 | 1562 | 1555

10 10 | 3.081 | 2.230 | 1.680 | 1.192 0.829 0.535
5 5| 2.707 | 1.475 | 0.652 | 0.167 | 1.04e-17 0

: : : : : : 0
7000 | 1.034 | 1.016 | 1.000 | 0.984 [ 0.966 0

ol © |Oo|o| © o o o .
ol © |o|o| © o o o o
ol © |o|o| © o o o o
ol © |o|o] © o o o o
ol © |o|o| © o o o o
ol © |Oo|o] © o o o o

3.9.4. Datasets Having Small Number of Variables (2 <p<4)

PCA of micro datasets does occur. For instance, Sir Ronald Fisher’s ‘Iris’ dataset
(Frank & Asuncion, 2010) consists of four variables. For p’in the range of 2 <p <4, the
HornsMethodSampledMEV.mand HornsMethodSampled20M.m algorithms
bypass the NN searches and directly calculate the (p’, n’) eigenvalues. Because these
datasets have few variables, computed results using a direct application of Horn's

algorithm are received with little delay. Note that exploratory runs using this range of p

are not possible with the algorithms presented because HornsMethodRandomMEV . m
and HornsMethodRandom20M . m each depend upon their respective lookup tables

and p < 5 will be rejected at the input menu. The EigenMean . m function will evaluate
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p of this size; however, it does not graph the result. The solution is a future work topic.
3.10. Nearest Neighbors Search Algorithm

Because of the intervals between lookup table entries, we use a two part
procedure called nearest neighbors (NNs) search to capture the position of (p’, n’) as it
relates to known values in T. Once the known values have been found, they are passed to
the interpolating function to be ‘read between the lines,” thereby estimating the MEVs
defining Horn’s curve for the (p’, n’) coordinate pair. This section concentrates on the
NN search and interpolation is discussed in Section 3.11.

By nearest neighbors we are referring to the first mapped value in T greater than
and less than that of each p’and n’. Table 3.4 lists the NN search variables and the roles
they have in the algorithm. For continuity with the MATLAB code in Appendix Il, the

MATLAB variables are also provided in Table 3.4. The mechanics of the algorithm are

straightforward. The goal is to ‘sandwich’ (p’, n) such that p©? < p'< p™ and

Table 3.4. Nearest neighbor search variables naming schema.

Variable Role
o Lower nearest neighbor variable. In MATLAB it is
P nn1p for "nearest neighbor 1ower p"
) Upper nearest neighbor variable. In MATLAB it is
P nnup for "nearest neighbor upper p"
Lower nearest neighbor observation. In MATLAB it is
nnln for "nearest neighbor 1ower n"
n® Upper nearest neighbor observation. In MATLAB it is
nnun for "nearest neighbor upper n"
During scan of T for a nearest neighbor, row values

n (')

Row are returned. Adding 'r' to the upper/lower NN variable names
Identifiers | provides row information on where the NN variables are located.
(all) For example, the NN search of T provides rnnlp, rnnup.

The NN search of S yields rnn1n, rnnun. (Section 3.10.3)
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n <n'<n®. Searching is done in two parts, first in the p column (Column 1) and then
proceeding to the n column (Column 2) of T.

3.10.1. Boundary Conditions Not Along The Diagonal

Before beginning a search of T for p© and p®”, the algorithm checks to see if p’ is
at a boundary by comparing it to the minimum and maximum values of p in the lookup
table. The minimum and maximum values of the lookup table are dynamically assigned
each time the program starts; therefore, if the boundary values of the lookup table change,
the min/max values are updated. If p is found along boundaries, the algorithm makes
assignments to the NN variables p© and p™ as given in Table 3.5. Note that this process

repeats exactly for n’ after p and p™* have been given assignments.

Table 3.5. Boundary conditions and how to address them in nearest neighbor
assignments. £5 and £100 are the maximum granularities for p and n, resp.

Condition Solution
O = mi
R p*’ = min(p)
p’=minimum p p(+) ~ min(p) + 5

p® = max(p)

p’= maximum p p(') = max(p) - 5

n’=minimum n > =min(n)
n® = min(n) + 100
n® = max(n)

n'=maximumn | e - o) - 100

Either n"O=pY | _
orn®=p® M7=

3.10.2. Boundary Conditions Along The Diagonal

In a moment we will discuss how the algorithm searches first for p© < p'< p®

and then n© <n'<n®. In Section 3.7 the case was made to not process any p > n sized

data. Because all combinations of pairs for p©, p , n®, and n™ are needed for
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interpolation, the algorithm must be able to detect if an NN assignment is made that
violates the constraint. In Figure 3.14, we see a notional out-of-bounds configuration.
Because (p’, n") was somewhat near the diagonal but not over it, the NN values pulled
from T are valid at their original positions within the table but creation of new NN
coordinate pairs resulted in an invalid combination. For example, in Panel A the
coordinate (p, n®) breaks the constraint. The solution is to use what is already known
about the NNs and reassign the coordinate as (p, n®).

The reader might notice that we now have two pairs at the same coordinate. It
might seem that something has been lost but this is not the case. The linear interpolation
method we are using (Section 3.11) is robust in making computations for overlapping

lines and lines that cross. Part | of the interpolation method is to construct two surrogate

(A) Problem: NN Violates Constraint

(p™),nt) x /

n(+)

Figure 3.14. Case of out-of-bounds nearest neighbor find. In Panel A, (p©, n®) violates
the minimum constraint n > p. Panel B shows the solution is to set n®=n™,
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curves and use subsequent interpolation of the surrogate curves to reach the desired
solution for (p’, n). In the example shown in Figure 3.14, the interpolation routine will
return a surrogate curve that matches the MEVs mapped for (p©, n®)). Therefore, we do
not have to do anything odd or complex to find and fix the constraint violations.

3.10.3. Nearest Neighbors Not At The Boundaries

Returning to our goal of finding p” < p'< p® and n® <n'<n™ we search in
two parts, first in the variables column and then moving to the observations column. The
mechanics of the algorithm are simple: Centering on p’, look to find p’in T. If thereisa
direct match, the algorithm records the rows where p’ is found, assigns p© = p® = p’
and move out of the search loop for p’. Figure 3.15 illustrates the general process.

If no direct match is found, start a loop counter at 1 and increment p’to find pt”
and decrement p' to locate p©. We set a loop limit equal to the p granularity (5, for all
cases) so that the algorithm avoids entering an infinite loop searching for a value that will
never be found (this should only happen if T is somehow corrupted). We continue to
search T iteratively above and below p' until mapped values for p and p® are assigned.
Once p® and p™ are known, rows of T are extracted to form S, a matrix containing the
bookkeeping columns and the MEV data for p© and p. The reason for creating this
smaller matrix is we already have half the information needed for all coordinate pairs of
PO, p n® and n™. There is no advantage to searching for n@ <n'<n® in T.
Because of the sparsity of the lookup table, the rows of S are truncated to the number of
non-zero columns for p®. This ensures the rows S are free of the “filler’ data used to

support the structure of the lookup table — zeros have no practical meaning to subsequent
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Matrix  Col1 Col 2

b o 1270725 1221929 1186979 1155608 112966 1101491 1076144 1050387 1027607 1003946 0981904 0.960629 093759 0915781 0.892579 0.870993 0845777 0.820365 0.793967 0.768929)
[ ns 1266149 121996 1183721 1153124 1123831 1097820 1073742 1050781 1029623 1005339 0983886 0.961091 0.939228 0917273 0.895526 0871741 0848106 082123 0.794311 0.76963]
P ng 1261288 1217463 1181236 1151392 112322 1097954 1072017 1050137 1029922 1005494 0984705 0.962456 0.938777 0918089 0.895701 0873146 0848895 0.826185 0.797971 0.772201]
P n, 126274 1215606 1170662 1150078 1120584 1095292 1072509 1040705 102500 1004911 0.084384 0962052 0.941478 0.016208 0898438 (0.87600 0.849971 0825802 0.800367 0.772797)
P ne 1256341 1214676 1181019 1150341 1123711 1007557 107363 1050329 1028013 1006241 0983679 0.063278 0941286 0918858 0.895980 0874852 0851412 0.823017 0.79893 0.772403)
P ns 1256962 121065 1179227 1148427 1122542 1095506 1070963 1046357 1025593 1004555 098336 0.962372 094184 0919198 0.898344 0876262 0.854921 0.820741 0.802068 0.774894|
[ ne 1260213 1214585 1178262 115012 1123779 1096824 1073761 1049293 1026663 1004166 0982585 0.961538 0.939432 0918318 0.898851 0.876579 0.852876 0.828662 0.800078 0.774401]
P ns 1256324 1210624 1178032 1147049 1122104 1094264 1072111 1048972 1026606 1005685 0983544 0.960454 0939946 0919588 0.898554 0.877865 0853868 0.820793 0.803862 0.779095|
P n, 1248327 1206958 1174080 1143845 1114824 1000202 1069709 1048435 1026638 1003513 0984047 0.062926 0042645 0922917 0.902613 0881252 0858367 0.834254 0.809073 0.778124|

1247674120321 1168306 1142011 1114678 108994 106724 1046456 1025832 1003746 0983708 0.964793 0.943287 0923779 0.904078 0884286 0.860172 0838214 0.810589 0.777561]

T 119672 1164276 1139567 1116922 1094611 1075016 1057107 1039006 1022168 0938777 o 0 0 o 0 o 0 0 0

g 1197223 1160762 1136169 1114326 1093977 1074296 1056546 1039558 1021803 0941478 [ 0 [ 0 0 o 0 [ 0

g 1188219 1156303 1132106 1112148 1092279 1072538 1054373 1036437 101977 0941286 0 0 [ 0 0 4 0 0 0

n; 1189424 1155723 1132198 1111219 109069 1073731 1055666 1038698 1021435 0.94184 0 0 [ 0 0 0 0 [ 0

) e 1185515 1151777 1129429 1105574 1088374 1071153 1054559 1037718 1021506 0939432 0 0 0 0 ) 0 0 0 0

P 1185683 1152658 1130013 1108417 108361 1071621 1055254 1037752 1020824 0939946 0 0 0 o ) o 0 0 0

n 1183844 1150054 1127564 1104666 1086434 1067491 1052111 1036702 1021301 0942645 [ 0 [ 0 0 o 0 [ 0

s 1182793 1149613 1125598 1104048 1085542 1067455 1051349 1035372 1020062 0943287 0 0 [ 0 0 4 0 0 0

n; 1171049 1141563 111899 1100853 1084602 1066757 1050357 1035092 1018503 0945342 0 0 0 0 ) 0 0 0 0

n 117237 1138505 1117334 109675 1080909 1063281 1048377 1033337 1019229 0945143 [ 0 [ 0 ) [ 0 [ 0
[ [ 1168528 1139 1117480 1097845 108046 o Q 0 0 0 [ 0 [ Q 0 0 0 [ 0 o
Pa ng 1163313 1135217 1113623 1095746 1077544 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
Pa ng 1160532 1135323 1112964 1094409 1076689 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
P n, 11567 1130066 1110143 1092959 1075698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
P ng 115281 112969 1108204 1090575 1073887 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of
P ng 1149880 1124388 1105535 108723 107343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 of
[ ne 1148632 1122928 1103655 1087155 1071574 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
Pa ng 1147007 112269 1101973 1084502 1070406 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
Pa n, 1142664 1118933 1099034 1083508 1068929 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
P n, 1141273 111565 1009315 1082549 106669 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0|

Col2

1.221791 1.186252 1.154838 1.128343 1.107656 1.084107 1.063433 1.043702 1.024636 1.004611]

S 119672 1.164276 1.139587 1.116922 1. 1.075016 1.057107 1.039006 1.022168
1197223 1.160762 1.136169 1.114326 1. 1.074296 1.056546 1.039558 1.021803

1188219 1.156303 1.132106 1.112148 1. 1.072538 1.054373 1.036437 1.01977

1.189424 1.155723 1.132198 1.111219 1. 1.073731 1.055666 1.038698 1.021435

p() Ng 1185683 1.152658 1.130013 1.108417 1.088381 1.071621 1.055254 1.037752 1.020824

Ny 1183844 1.150954 1.127564 1.104666 1.086434 1.067491 1.052111 1.036702 1.021301

ng 1182793 1.149613 1.125598 1.104048 1.085542 1.067455 1.051349 1.035372 1.020062

n, 1171049 1.141583 1.11899 1.100853 1.084602 1.066757 1.050357 1.035092 1.018503

n; 1172387 1.138505 1.117334 1.098759 1.080909 1.063281 1.048377 1.033337 1.019229

(p (-), n(')) 1189424 1.155723 1.132198 1.111219 1.09069 1.073731 1.055666 1.038698 1.021435 0.94184

Figure 3.15. Trimming of the lookup table T to sub-matrix S, and finally a matrix of only
nearest neighbors data, matrix Y. Only numeric entries comprise actual T, S, and Y.

calculations. Column truncation of S yields MEVs that extend only to Cp(_) . However,

in Sections 2.2.4 and 3.9.2 we learned the first p/2 components is where Horn’s curve
provides an estimate of random noise in the sample. Therefore, truncation near the last
component (and well below A =1.0) is inconsequential to our test.
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For the input parameter »', the process is similar for that of finding p'in that
Column 2 of S is searched up and down from #’ until n"© and n* are located. If n’is a
direct match to a value for n, then n® = n*) = n’. The search step size increment is 1 but
because of the larger granularity in n the search extends £100 units away from n".

At the conclusion of the search for n® and n™, we can reduce S to four rows. Each row
defines a coordinate pair: (p™, n?), (™, ™), (p©, nO), and (p®, ™). These four rows
are stored in a new matrix, Y.

Returning our attention to Figure 3.15, the first column of T is searched for p*
and p™*) and when found, the rows are identified (blue and gold, respectively) and
removed from T to form S. Next, the second column of S is searched for the rows
containing n® and n® (green and white rows, respectively) and when located, are
removed to form Y. The blending of colors in Y indicates the combination searches
provides the needed information to carry Y forward for interpolation.

3.11. Interpolation-Looking Between the Points
Interpolation is the estimation of an unknown intermediate data value by fitting a

function through known data values. Given the familiar form y = f (x), the process

works backwards to find an unknown function f that represents the known dependent y
values from the known independent x values. There are many types of interpolation; the
one we are specifically interested in is piecewise linear interpolation; piecewise because
we are seeking intermediate values at multiple discrete points along a path and linear
because we are not fitting any curvature components between those points. The

technique is akin to ‘connecting the dots” which is suitable in this case, as we have
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already visualized Horn’s curve passes originates at(C,, 4, )and passes through (C,, 2, )

and so on until terminating at(C_,A_). The reader should recognize that averaging the
P P

distance between the points is not an acceptable method because the relationship of (p’,
n’) to the nearest neighbors is not necessarily along the midpoint of the data points stored
in Y. The expression for the piecewise linear interpolation function is given by

Quateroni & Saleri (2003)

f(x) = f(xi)+w(x—xi) forxel. (3.12)

i+1 i
where f (X) is a function denoted by the interval I, as [x;, x;,,] having a set of nodes
Xy <X <---<X,,; <X,. We can consider the nodes as the number of components in our

model, each represented by an eigenvalue. The eigenvalues have been sorted, so the
inequality requirement holds. We note that this expression meets our need of proximity
for the interpolated solution to (p’, n’) because the quotient weighs the result by
differences in both the dependent and independent values between adjacent points.
Lastly, the intervals in our problem are finite and closed on adjacent points.

MATLAB has several interpolation functions in its library and the one of interest
to the problem at hand is interpl, a linear piecewise function of the form

yi = interpl(x,Y,xi)

where v 1 is the unknown ordinate at abscissa x and Y are the values of the underlying

function at the points of the vector or array of xi. Our query is not structured this way;

thus far we have treated C, as the abscissa and /4, as the ordinate.
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Instead, we are interested in a scree line which is defined by the coordinate pair
(Ci,Z)Vi e{l,2,..., p—1, p} but are providing a (p’, n) pair which may or may not be in

the lookup table. Although (p, n) is used as input to Horn’s algorithm during the random
data preprocessing step, determining the (p’, n") pair from a scree line is not so clear: We
are interpolating one value on the vertical axis for two points along the horizontal axis
and interplexpects a unique x for every f (x). A multistep approach, one where an
intermediate calculation provides a path to a final solution, is required. Therefore, if we
can format the input we send to interp1, the function will provide the intended result.

3.11.1. Surrogate Curves

In Figure 3.16 there are two places on the graph where the intermediate solution is
needed. The first is at the coordinates above (p’, n’) given by (p, n®) and (p™, ™).
The second set of coordinates is below (p’, n’) at (p, n®) and (p©, n®). The multi-
dimensional interpolation is done this way to maintain order in the nearest neighbor
matches. Otherwise, if only one curve is interpolated from all the nearest neighbors, we
will have inconsistent results from mixed coordinates. Interpolating two surrogate curves
evu and ev1 to find the third and final curve maintains the data pedigree.

evu(i) = interpl ([nnln;nnun], [mevnnln(i); mevnnun(i)],n)

evl (1) interpl ([nnln;nnun], [mevnnln(i); mevnnun (i) ], n)
Here, ev is the unknown eigenvalue along the (u)pper or (1)ower surrogate curves at
component index i; nnln and nnun are the lower and upper NNs for observations;
and mevnnln and mevnnun are the mean eigenvalues for nn1n and nnun at index

i, respectively. (In Appendix Il the mevnnln and mevnnun are given in terms of rows
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of Y. These names are used here for simplicity in discussion.) For reference to the
nearest neighbor naming schema, please refer to Table 3.4.

Lastly, n is n’, the unknown we wish to find. MATLAB will perform index
operations of vectors without counters; however, we have a special case of a single point
on the curve due to multiple responses for one predictor. Iteration takes place for all C;,
i=1top".

3.11.2. Interpolation of Horn's Curve

When we have both surrogate curves, we can next interpolate the overall solution
using evu and ev1 as inputs into getev as

getev (i) = interpl ([nnup;nnlp], [evu(i); evl(i)],p)

Here, getev (i) are the MEVs for (p’, n’) for each component C; (still observing i =1
to p©); nnup and nn1p are the lower and upper NNs for variables (Table 3.4); and p is
p’, the unknown part of our point-of-interest (p’, n’). We similarly have to iterate across
each point in evu and ev1 but when finished have arrived at the desired solution: a
completed Horn’s curve for the user-supplied (p', n’) input.

It is helpful to demonstrate an example of how the interpolation sequence occurs.
Returning to Figure 3.16, we see a visual representation of fictitious data from Y in the
form of four plotted upper and lower NN curves. The two dark blue lines represent upper
NN pairs (p©, n®) and (p™, n®) and the gold lines fix lower NN pairs (p©, n®), and
(P, "™, Round markers signify the corresponding MEVs for each component C; - Cs
with respect to the NN curves. Brackets indicate the range of the anticipated Horn’s

curve solution for (p’, n’). No interpolation has yet occurred.
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(p(+), n(-))

Figure 3.16. Pictorial representation of the upper and lower nearest neighbors curves.
Mean eigenvalue data (not shown) are along the vertical axis. Components (C;) are
along the horizontal axis.

(p™), n®)

(p®, n) | €
(p(+), n(+)) :

w.n)|
(p(-)’ n(-))
(PO, ) | @
(p(—), n(+)) :

Figure 3.17. Interpolation of the upper surrogate curve at (p, n) and the lower
surrogate curve at (p©, n'). Features created during this step are shown in red.
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In Figure 3.17, the upper and lower surrogate curves defining evu and ev1 have been
found by using two pairs of known curves (the upper and lower NNs from Y) for
interpolation of each unknown curve at the coordinate (p®, n’) and at (p©, n’). Features
that have changed or been added to on the chart are indicated by red text boxes, lines, and
markers. We have located »n’ from determining n® <n'<n®,

The process is repeated in Figure 3.18, this time evaluating the two surrogate

curves for the unknown Horn’s curve. The interpolation routine getev has found p' by
determining its relationship as p” < p'< p*’. We now know each A for each component

Ci, thereby defining the estimate of Horn’s curve for (p’, n) and can provide the graph for

visual analysis. Figures 3.19 - 3.22 show full results rendered in MATLAB.

(PO, n)

Figure 3.18. A finished, interpolated solution of the estimated Horn'’s curve for
(p’, n’). The solution is shown in solid red; the surrogate curves are in view to orient the

interpolation. Each (C,, 4) is representative of a point along the curve. All A shown are
progeny of the surrogate curves from Y and the nearest neighbors extracted from T.
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MEV Interpolation at Point (11,16)

—B— Upper Nearest Neighbor (15,15) ||
------- Upper Interpolated Curve (15,16)
—6— Upper Nearest Neighbor (15,20)

3r \‘\\ —8B— Lower Nearest Neighbor (10,15) [
AN e Lower Interpolated Curve (10,16)

2506 ‘ —©6— Lower Nearest Neighbor (10,20) |
i S ---&-- Interpolated Solution  (11,16)

Hom's Algorithm Soln ~ (11,16)

Component{Ci)

Figure 3.19. A very small dataset. The upper NN curves (blue) cross at p =5 yet the
surrogate curve stays well-banded. This indicates the interpolation routine is robust with
regard to which line is above or below the other. The figure legend describes in detail
the coordinate pair of each curve drawn.

Interpolation of MEV at Point (13,178)

—8— Upper Nearest Neighbor (15,175) ‘ v : '_' - .
08f --eee Upper Interpolated Curve (15,178) T
—&— Upper Nearest Neighbor (15,180) |

0.6} —8— Lower Nearest Neighbor (10,175)
04l Lower Interpolated Curve (10,178)
—6— Lower Nearest Neighbor (10,180)
0.2H - -- Interpolated Solution (13,178)
— EigenMean Solution for (13,178)
L I T I I

0 1 1 L 1 1
1 2 3 4 5 6 7 8 9 10

Component(C)

Figure 3.20. A small dataset. Notice the close approximation among the curves.
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MEYV Interpolation at Point (65,297)
o5F T T T T T T T .
—HB— Upper Mearest Neighbor (65,295)
------- Upper Interpolated Curve (65,297)
- —6— Upper Nearest Neighbor (65,300)
218 —HB— Lower Nearest Neighbor (65,295) H
------- Lower Interpolated Curve (65,297)
—6— Lower Nearest Meighbor (65,300)
151 ---&--- Interpolated Solution (65.297) ||
: Horn's Algorithm Seln  (65,297)
1=
1
05F
0 1 1 L 1 1 L 1 1
1 8 15 22 29 36 43 50 57 65
Component{Ci)

Figure 3.21. A medium dataset. All the curves have converged around the Horn'’s
algorithm solution for random data (solid red line). This graphic uses the same size of
data Horn presented in his 1965 paper.

MEY Interpolation at Point {800,3266)

—8— Upper Nearest Meighbar (800,3200)
Upper Interpolated Curve (800 3266) I
—&— Upper Nearest Meighbor (800 ,3300)
—H&— Lower Nearest Meighbor (800,3200)
Lower Interpolated Curve (800 3266)
—&— Lower Nearest Neighbor (800,3300)
4r - Interpolated Solution (800 ,3266)

251

15F Hom's Algorithr Soln (800 3266)
1<
1
05+
[] 1 1 L 1 L 1 L 1
1 g9 178 267 356 444 533 B22 i 800
Component(Ci)

Figure 3.22. A large dataset. There is much less to see in differences between mapped
and interpolated in dimensions of this size.

72



Note that the figures show the upper and lower curves, both from mapped data
and interpolated surrogate points. The solid red line running through the middle of the
figures represents the interpolated solution and is a direct computation of (p’, n") using
EigenMean (Figure 3.3). Notice that some of the upper/lower nearest neighbor curves
cross (Figure 3.19 near p© = 5). The observation that this does not affect the accuracy of
the interpolating function is reassuring. Exploratory results are in agreement with
expectations from earlier visual analysis. Note that in this section all interpolation was
carried out on random data — no sampled data were used in the analysis.

3.12. Linear Regression Second-Order Model

The primary motivation behind developing a linear regression second-order
model (20M) is to save space. Earlier we learned that the lookup table is sparse — it is
full of zeros because the rows only contain data equal to two plus the value of the
variable p. If the data already collected (the lookup table) is used to fit a quadratic
polynomial for each (p, n) row, then the size of the lookup table can be greatly reduced.

3.12.1. Suitability of A Second-Order Model

The reader might question "Why a second-order model — why not fit a higher-
order polynomial?" The answer is in the shape of Horn’s curve: its simple characteristics
—a slightly bowed line without inflection points — does not require a complex
polynomial. Simplicity and parsimony in the model is desired. Three coefficients
provides a suitable representation of the curve. More coefficients add data back into the

lookup table and does not provide a more accurate solution.
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3.12.2. Least-Squares Estimation of Regression Coefficients

The method of least-squares seeks to fit a line through regressor data points X by

minimizing the differences between the observed responses at y and a model predicted
response of y (in this case, A= y ). In matrix notation, the model is
y=Xp+g (3.12)

where B are the regressor coefficients, € is the error term (y and X are already defined).

Y1 1 % X, &
Y, 1 X X Fo &
y=|" [ X=. . S B=| B | e=| . (3.13)
: Do : 5
Y, 1 Xy X, . g,
The form of quadratic model that fits the problem at hand, interpolating an
estimated Horn's curve for (p’, n’), is given by
A=p,+BC+p,C (3.14)

where A is a vector of estimated mean eigenvalues and C is a vector of components
numbered from 1 to p. For amplifying information regarding the derivation of Equations
(3.12) - (3.14), please see the text by Montgomery, Peck, and Vining (2006) or similar
source on linear regression techniques.

The MATLAB built-in function library provides a function called polyfit that

evaluates vector C to return a vector of least-squares estimated coefficients B at the

specified order of the polynomial (2 for a quadratic). Readers may be interested to learn
that instead of formatting coefficients in ascending power order, polyfit outputs

coefficients in a descending power format (B11, B1, o) (Recktenwald, 2000).
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We use polyfit to evaluate each row of MEVs, thereby reducing the lookup
table to only five columns (two for bookkeeping of the coordinate pair and three for the
polynomial constant B, linear ; coefficient, and quadratic B, coefficient). The reduction
in file size is significant, from almost 80 megabytes of MEV data to just 606 kilobytes of
20M data. A snapshot of the table is given below. For reference, compare to the original

lookup table in Table 3.3.

Table 3.6. Sample of the coefficients lookup table. Total width is five columns—two for
coordinate pair bookkeeping and three for coefficients entries.

p n ﬂll :Bl ﬂo
1000 | 1005 | 4.5335e-6 | -0.0078 | 3.3774
1000 | : : : :
1000 | 7000 | 6.3377e-7 | -0.0019 | 1.7546

500 | 500 | 1.8203e-5 | -0.0156 | 3.3876
500 | ¢ 5 2 5
500 | 7000 | 1.2644e-6 | -0.0025 | 1.5139

51 5] 01763 |-1.7302 | 4.2507

o1

5] 7000 | 4.9733e-5 | -0.0170 | 1.0504

To display the data, MATLAB’s function polyval uses the B coefficients from

a row in the coefficients lookup table to estimate i fora particular (p, n) and returns an

array we can easily plot. Producing Horn’s curve is a simple matter of rendering the

(C, i) coordinates in a figure. We shall see that the 20M curve is not truncated at p©
during interpolation as it is for the MEV approach.
3.12.3. Sufficient k for Linear Regression

In building the 20M, the anticipated approach is to use least-squares estimation to

find the model coefficients. We need to ‘trust’ that the lookup table data will adequately
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define the regressed line. Therefore, due diligence is required to verify the lookup table
entries can be used as a starting point for the model. Note that this is a progress check to
verify data is properly conditioned,; it is not an exercise to reevaluate if changing the
iterations of k in the MCS will give different results. (From the discussion in Section 3.4
we already know k affects the smoothness of the data.)

In this small scale experiment, the MCS are re-accomplished for varying k in
powers of 10 from 0 to 3 (10, 100, 1,000, and 10,000). At the end of each k runs, the
indexed eigenvalues are averaged, stored, and the process repeated until k completes the
last of the 10,000 iterations. This is done for only one example problem, that of 297x65
(which is, if one refers to Figure 3.4, Horn’s sample size from his 1965 paper). Our

interest is with how well k = 100 ‘behaves’ because it is the size of the MCS iteration

k=10 k=100
15 15
I 4 1
05 0.5
0 0
1 8 1522 29 36 43 50 57 65 1 8 1522 29 36 43 50 57 65
k=1000 k=10000
15 15
<9 1
05 05
0 0
1 8 152229 36 43 50 57 65 1 8 1522 29 36 43 50 57 65
Component (Ci) Component (C.)
p=65, n=297

Figure 3.23. Subplots of Horn'’s curves produced from various k iterations of Monte
Carlo simulations. Lines of red circles are MEVs, green lines are the 20M fitted curves.
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parameter k from which our existing data is constructed. In Figure 3.23 we see the results
of the experiment. The overlapped green line on top of the red o’s marks each eigenvalue
along Horn’s curve and compares the lines for any trends with respect to k. As viewed in
the upper right subplot, k = 100 offers a satisfactory fit to the example dataset and while
there are some small variations between the 20M and MEV lines, there is no trend
present that would be cause for alarm.

We also observe that k = 10,000 is the best fit in that the two lines follow the exact same
path (this observation should be expected for such a high value of k.)

However, the difference between the two solutions is slight and does not merit a
hundredfold increase in computation time. Based on these exploratory runs, k = 100
remains a suitable selection for purposes of linear regression least-squares second-order
model fitting.

3.12.4. Model Adequacy

A standard and necessary procedure for linear regression model fitting is checking
for basic assumptions (Montgomery, Peck, & Vining, 2006:122). They include:
- A linear relationship exists between the response and predictor;
- The error term € has zero mean;
- The error term € has constant variance 02;
- The errors are uncorrelated; and

- The errors are normally distributed.

In the case of the 20M, the response Aisa linearly independent (orthogonal) product of

random variables sampled from the known ~ NID(0, I ;) population distribution defined
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for the MCS. At no point is noisy, real-world data introduced into the MEV stream;
therefore, the model adequacy assumptions are satisfied.

3.12.5. Nearest Neighbor Interpolation for the 20M

The lookup table has been reduced to five columns but still needs to be searched
during a (p’, n) query for nn1p, nnup, nnln, and nnun. The methodology discussed
earlier for searching and sorting NNs (Section 3.10) and interpolating (Section 3.11) has
not changed; the only difference is fewer columns of data need to be organized (each row
in the coefficients lookup table is five columns wide). New methodology employed.

3.12.6. Random Data Graphs Comparisons

There is motivation to compare visually the 20M graphs to those produced by the
original lookup table. Of concern are "Was any accuracy lost for the reduction of lookup
table size?" and "Does the curve fitting and least-squares introduce variation to the
method?" The parsimony in the 20M is not worth risking the accuracy already available
to us in the MEV. Fortunately, the answer to both questions is "No."

Visual analysis of side-by-side comparisons of the graphics indicates performance
is similar for each strategy. In Figures 3.24 - 3.26, the 20M figures are in Panel A and
the MEV ones are in Panel B. The largest difference appears along the horizontal axis.
Because the 20M can evaluate each curve at a number of points equal to p’, the

horizontal axis in the 20M figures extend to p’and is not truncated at Cp(,) (as it is for

MEVs during the NN search). Additionally, the 20M curves appear to be smoother. In
comparison, the MEVs are plotted in a ‘connect-the-dots’ fashion with no algebraic

computation of intermediate values.
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A 20M Interpolation of Point (11,16) B MEV Interpolation at Point (11,16)
T T T T T T T T T T T T T T r T T T T T T
350 —8B— Upper Nearest Neighbor (15,15) 1 35k —B— Upper Nearest Meighbor (15,15) ||
--- Upper Interpolated Curve (15,16) --- Upper Interpolated Curve (15,16)
3k —6— Upper Nearest Neighbor (15,20) |4 —©6— Upper Nearest Neighbor (15,20)
—8B— Lower Nearest Neighbor (10,15) 3 —B— Lower Nearest Neighbor (10,15) [
sENON. | Lower Interpolated Curve (10,16) 1 N O P N N e Lower Interpolated Curve (10,16)
—8— Lower Nearest Neighbor (10,20) 25 —8— Lower Nearest Neighbor (10,20) -
---&--- Interpolated Solution (11,16) ---¢--- Interpolated Solution ~ (11,16)
2 — Hor's Algorithm Soln  (11,16) — Horm's Algorithm Soln ~ (11,16)
P — 2
18 15
1 1
05 05
0 0
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10
Companent (C‘) Component(C‘)
Figure 3.24. Visual comparison of results for a very small dataset (11,16).
A 20M Interpolation of Point (65,297) B MEV Interpolation at Point (65,297)
=B Upper Nearest Neighbor (65,295) 25r —HB— Upper Nearest Neighbor (65,295)
------- Upper Interpolated Curve (65,297) -=----- Upper Interpolated Curve (65,297)
2 —6— Upper Nearest Neighbor (65,300) —6— Upper Nearest Neighbor (65,300)
% —8— Lower Nearest Neighbor (65,295) 2% —8— Lower Nearest Neighbor (65,295)
"""" Lower Interpolated Curve (65,297) ------- Lower Interpolated Cumve (65,297)
—6— Lower Nearest Neighbor (65,300) —6— Lower Nearest Neighbor (65,300)
15t ---4--- Interpolated Solution (65,297) 15l -=-&--- Interpolated Solution (65,297)
Hom's Algorithm Soln  (66,297) Horn's Algorithm Soln  (65,297)
P =<
1 1
05f 05k
0 L . L . . L L L 0 L . L . . L L .
1 8 15 22 29 36 43 50 57 65 1 8 15 22 29 36 43 50 57 65
Component (C‘) Componenl(C‘J
Figure 3.25. Visual comparison of results for moderate data size (65, 297).
A 20M Interpolation of Point (800,3266) B MEY Interpolation at Point (800,3266)
25 T T T T T T T T T T T T T T T T
=8 Upper Nearest Neighbor (800,3200) 25k =8 Upper Nearest Neighbor (800,3200) U
Upper Interpolated Curve (800,3266) Upper Interpolated Curve (300 3266)
—&— Upper Nearest Neighbor (800 3300) —&— Upper Nearest Neighbor (800,3300)
—8— Lower Nearest Neighbor (800,3200) [ —8— Lower Nearest Neighbor (800,3200)
Lower Interpalated Curve (800 ,3266) 2 -+~ Lower Interpolated Curve (300 3266)
—&— Lower Nearest Neighbor (800,3300) —&— Lower Nearest Neighbor (800,3300)
151 O - Interpolated Solution (800 ,3266) || & - Interpolated Solution (800 3266)
’ Hom's Algorithm Soln  (800,3266) 15F Hom's Algorithm Soln (800 ,3266)
< 1<
1 1
05 05k
0 L . L L L . L L 0 L . L . L . L L
1 89 178 267 356 444 533 622 7 800 1 gg 178 267 356 444 533 622 " 800
Component (C‘) Componem(C‘)

Figure 3.26. Visual comparison of results for larger data size (800, 3266).




In each strategy the known solution (‘the truth curve’; an application of Horn’s
algorithm EigenMean from Figure 3.3 for direct computation of the MEVs describing
the coordinate pair) is calculated and overlaid into each figure as a heavy, solid red line.
In nearly every instance, the interpolated (p’, n") Horn’s curve is indistinguishable.

The visual agreement between solution strategies and within the interpolation
routine indicates valid results are being produced. Therefore, the methodology developed
thus far is capable of producing final results and we are ready to see how the final
solution for estimation Horn's curve comes together in Chapter IV.

3.13. Methodology Summary

In this chapter, a technical examination of Horn’s paper was conducted first to
understand the method and then to build an algorithm capable of displaying Horn’s curve.
The individual elements of the algorithm are:

- Monte Carlo simulation generation of random data;

- Creating correlation matrix of the random data;

- Eigendecomposition of the correlation matrix;

- Indexing, averaging, and storing the MEVs in the lookup table;

- Searching the lookup table for nearest neighbors p”, p@, ™, n® points
according to one of four cases, depending upon the location of (p’, n’) in the
lookup table;

- Interpolation of nearest neighbors to produce surrogate data before in-turn
interpolating the surrogate data for estimated MEVs; and

- Plotting of the estimated MEVs to create Horn’s curve for (p’, n’).
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Once the MEV-based algorithm was complete, various sized (p’, n’) pairs were selected
and used to query the lookup table. The interpolated curves were overlaid with a direct
computation of Horn’s curve of (p’, n).

After MEV algorithm functional integrity was verified, the next step consisted of
refining the lookup table data into a table of linear regression second-order coefficients.
The second-order model algorithm permitted an 80-fold reduction in lookup table size
with no loss of graphical accuracy in the completed Horn’s curves. Visual analysis
verified both algorithms perform as intended and have comparable results to each
other. Our original goal is to complete Horn’s test for an estimate of dimensionality for
an n x p sampled dataset within range of the lookup table. In Chapter IV we will test the
algorithms using sampled data from real-world experiments and produce the research
objective of this thesis: An accurate stopping rule to produce a determination of

multivariate data dimensionality using an estimate of Horn’s curve.
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IV. Results and Analysis

4.1. Chapter Overview

This chapter extends the exploratory analysis work done earlier to solving real-
world problems. The objective is practical application; to make a contribution to
practitioners wishing to solve principal components-type problems. To summarize our
problem statement: Integral to successful PCA is determining when to stop extracting
components — the matter is not a trivial one. Our solution — the goal — is to make Horn’s
test easier to use, meaning "with minimal time and effort." The large amount of random
data needed has been preprocessed into manageable, nearly instantaneously available
form, and algorithms have been written to produce an answer. The final link to a useful
solution is bringing the theory to the application and synthesizing them.
4.2. Sampled Data Source

Thus far we have experimented with random data of known size. We surveyed
the literature review to see where and how large typical studies might be but the actual
what from a published database has not been used until now. Revisiting the UCI
website, eleven datasets were selected as ‘test subjects.” The reasons for selecting these
particular ones are many: The type of data they contain (regression or classification), how
much conditioning of the data was needed (non-numeric characters, missing values, NaN,
Inf, non-invertible are all no-gos), a representative sample for the lookup table (right-
sized n x p). As much as possible of the original data was kept; editing and conditioning
was kept out to a minimum. Even so, the findings and evaluations given here may differ
from other studies accomplished with the same data. Table 5.1 lists the datasets.
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4.3. Putting It All Together

We have sufficient and necessary components to marry the theory with
application. In Chapter 111 two flowcharts were used to describe how the two solution
strategies function individually — Figure 3.2 for random data and Figure 3.10 for sampled
data. Accompanying MATLAB scripts, one per each flowchart, details a body of
functional code (Figure 3.3 and Figure 3.11, respectively). However, the two parts are
not much use individually; the conjunction is required to produce the solution for an
accurate estimation of how many components to extract for PCA.

4.4. Running of the Main MATLAB Script for The Mean Eigenvalues Approach

Before proceeding to the visual results of Horn’s curve, we first complete a
progress check to verify functionality among the search, interpolation, and curve
producing subroutines. The main program script is called HornsCurveSampled.m.
and there are variants for each the MEV and 20M. The only difference is how the
different dimensions of the two lookup tables are handled.

When this program is run, we are given a choice of multivariate studies in the
directory and also presented an option to load one under another name. In our example
case, we choose option '1' for the Forest Fires dataset. The main program loads the
lookup table, determines the size of the lookup table, retrieves the user-requested file,
loads the data matrix, and then sweeps the data for size requirements (has to be within
range of T) and ensures it is not underdetermined (p > n). If a problem is found, the user
is notified what the problem is and given a chance to either reload another file or quit.

See Figure 4.1 for an image of the user input screen/menu.
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This script will estimate Horn's Curve to aid in making a
Principal Components Analysis (PCA) dimensionality deter-
mination for an actual--sampled--data set. Horn's Curve

is found by interpolating known, "ideal" data of size
equivalent to the actual sample size. Constraints regarding
input and what the script can do are listed below.

The input values must be within these ranges:

# of variables (p) --> {5,1000}
# of observations (n) --> {5,7000}

A crucial condition to consider is underdetermined data; that is,
data having fewer observations n than features p. PCA of
underdetermined data is possible; however, this script does not
accept such datasets.

Please choose a dataset to load. Type the number and press
"Enter.' If the dataset is not listed, choose '@' (zero) and type
in the filename.

(1) Forest Fires

(2) Glass

(3) Parkinsons

(4) SECOM

(5) Seeds

(6) Semeion

(7) Steel Plates

(8) MWisconsin Breast Cancer Study
(9) Wines (Set 1)

(10) Wines (Set 2)

(0) Manually enter a filename

-> Please make a selection (1-10) or (©):

Figure 4.1. Main program user interface.

Once the data preliminaries check out, the algorithm assigns the number of rows

of the matrix to »" and the number of columns to p’. Control is then passed to the

function findcurves.m which is the search algorithm used to find the nearest

neighbors pairs in the lookup table, interpolate the surrogate curves, and calculate the

estimated Horn’s curve. The interpolated curve is passed back and

HornsCurveSampled.m again has control over program flow. Next, the dataset
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undergoes correlation, eigendecomposition, and sorting of the eigenvalues (Figures 3.10
and 3.11; recall that there is no averaging of sampled data eigenvalues).

At this point, the merging of the real-world data (the user specified file) and
idealized data (the interpolated solution) occurs and Horn’s test takes place. Points along
the sampled curve and the estimate of Horn’s curve are checked component by
component. These are the cases that may be encountered and the outcomes:

- If the sampled data (plotted in the scree line) is larger than Horn’s curve at a
component, then that component is considered significant and it should be
extracted for analysis.

- If the scree line falls below Horn’s curve, then those components are
considered insignificant and may be discarded.

- If a component is below Horn’s curve but above Kaiser’s criterion at A = 1.0,
then it is considered contested. Contested points should be further evaluated
by the analyst for significance to the study at hand.

At this time we can get information about how much variance the components in
each of these cases is representing. This is vital for PCA since the summarization of
variance per component and the cumulative amount of variance the dimensionality
estimate retains is of value to the practitioner. The variance information will not be
shown on the graph because it is too unwieldy; rather, it will be displayed in the
MATLAB Command Window and stored in vector format (located in the variable

Workspace) should the analyst want it.
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4.4.1. Figure Output and Visual Analysis

The two components are stitched together to produce one figure displaying the
estimate of Horn’s curve and the results of Horn’s test. A quick visual shows what the

individual pieces looked like and how they come together in the solution.

Sampled Data of Size (517x13) Random Data of Size (617x13)
18
Scree Line 1 Horn's Curve
Kaiser's Criterion (K1) 16 Kaiser's Criterion (K1)
141
12r
1
1<
08F
06
04F
05F 0ol
ol T S L ol . . . L . L L . .
1 2 3 4 5 6 7 8 9 10 1 12 13 1 2 3 4 5 6 7 8 9 10
Component (C‘) Variable ,D{'J

MEYV Interpolated Solution of Dataset "ForestFires"” (517x13)

Scree Line
>l Hormn’s Curve i
Kaiser's Criterion (K1) = 1.0
i @ 4 ) >Hom's Curve > K1
2 8 L <Hom's Curve < K1
= 25r ® 1 K1<)<Hom'sCure |
o
S
w
=
c
@
D
L

Component (CI)

Figure 4.2. Conjunction of sampled and random data components in the finished product
using the interpolated mean eigenvalue (MEV) solution of Horn'’s test.
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In Figure 4.2, we see the solution (large center graphic) is a composite of the
sampled data (upper left) and random data (upper right) halves. The solution includes not
only an estimation of Horn’s curve, it also features two common visual elements of PCA

— Kaiser’s criterion and the scree line.

E MEYV is the solution strategy used to build this chart, “ForestFires” is the dataset name, (517x13) is the data size

3 MEV Interpolated Solution of Dataset "ForestFires" (517x13)
™ Scree Line ' ' T ' ' '
35k Sampled Data; Eigenvalues Sl:rele Line |
(Dots Along The Scree Line) Hom's Curve
Are Relative Size of ——— Kaiser's Criterion (K1) =1.0
3r Components @ 4\l > Hom's Curve = K1 [
#InEach LA~ O 8 L <Hom's Curve < K1
E 251 COmponent & 1/K1 < & = Hom's Curve m
- Category
= Horn’s Curve
E Green Points = Random Data; Mean
% ienifi Eigenvalues Interpolated from
4l Significant-> Extract The Lookup Table. Length
Ll (4 ea) Truncated by Nearest Neighbor
Lower Variable for MEV soln.
1 ﬂ

Kaiser’s Criterion

Ull

12/34567'891[]11213
Companent {Ci)

Red Point = Contested

Horn’s Test - Discard Components; Gray Points =
K1 -> Extract Eigenvectors Not Significant-» Discard
(1ea) Numbered1top (8 ea)

Figure 4.3. Detailed description of the interpolated solution of Horn'’s test.

Figure 4.3 provides a detailed explanation of each feature in the graphic and how
to interpret them. The legend box contains a count of the components in each category.
In this example, there are four components that are likely candidates for extraction (green
points), eight that could be discarded due to low explanation of total variance (grey
points), and one component that is contested (red point).
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The figure is designed to be a stand-alone analysis product; that is, it can be
shared electronically using any common picture file formats (.JPG, .PNG, .BMP, etc.)
For this reason, the algorithm used to produce the result, the dataset name, and the data
size are all included in the figure title. Referring again to Figure 4.3, the example shown
is "MEV Interpolated", "ForestFires", and "(517x13)", respectively.

4.4.2. Components Dimensionality and Variation Summary Output

Horn’s test is a visual analysis tool to aid in determining dimensionality but it is
only one tool. Because PCA is a variance-oriented technique, understanding how the
variance is distributed among the components provides the analyst with more
information, often leading to better solution options for decision makers. The final step
in completing Horn’s test is to read back the variance dispersion information captured
during evaluation of each component in relation to Horn’s curve. This is done in the
MATLAB Command Window and appears below the main program user interface
(shown previously in Figure 4.1).

Figure 4.4 is a summary of the dimensionality assessment. The dimensionality
estimate is equal to the number of components that meet Horn’s test criteria for
extraction. This is the actionable part of the analysis and is the solution to the problem
statement. Following the dimensionality estimation, we can determine how the variance
is spread among the components. Inthe Forest Fires data, one component (Cs) is

contested and its eigenvalue is 1.0637.
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-> Please make a selection (1-10) or (0): 1

Getting eigenvalues of (517x13) sampled data...Done!

Plotting all curves...Done!

3k 3k sk sk ok sk ok sk sk sk ok sk ok sk ok sk ok sk sk ok ok ok ok sk ok ok ok Summary Sk 3k ok sk ok sk sk sk sk sk sk sk ok sk sk ok ok sk ok ok sk sk ok ok sk ok ok ok sk ok
Dimensionality is estimated at 4 principal components by

Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative

aspects of the study that are particular to a dataset,

purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0637 <--

Proportion of total variance explained by Horn's = 58.11%.
Additional proportion of total variance explained by the
contested "between the curves" components: 8.18%.

If 1 contested components are included, proportion = 66.29%.

3k 3k 3k sk ok sk ok sk sk sk ok sk sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk sk 3k sk sk sk 3k 3k 3k sk 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 5k 3k 3k 3k 3k 3k 5k 3k 3k 3k ok 3k ok ok ok 3k ok sk ok

THE FILENAME USED IN THIS ANALYSIS IS ForestFires

End of processing.

Figure 4.4. Components dimensionality and variance summary output.

By applying Equation (3.8) (we do not specify a target variance T in this case) to
the j = 4 principal components in the dimensionality assessment, we get a variance

proportion of

i
%Z/L =T,j<p:i,j,peN (0¢N)
i=1
4
%Z = /11+/12 + A4+ 4, ) 1:;(3.3153+1.5693+1.4369+l.2323): 7'?238
i=1

:0.58106
which is the value given for "Proportion of total variance explained
by Horn’s"inFigure 4.4.

Below that, in the next two lines, is the result of applying Equation (3.7).
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,i<p:i,peN (0¢N)

= 1.0637 =0.08182

o |U}’ o |

If the two findings (Horn’s test and any contested components) are combined, Equation
(3.8) is reevaluated for significant and contest components and the proportion of variance
explained by the five components is 0.6629, or 66.29%. A gain of 8.18% variance might
be significant to the analyst, and if so, then the number of principal components equals
five. The feature of tabulated variance permits some flexibility in the analyst’s
assessment.

Included as information to the user are the top two lines (above the * Summary*
block); they occur during script execution just to show the program has not stalled in a
routine. For reference, the user can see what size the data is without having the figure
(such as Figure 4.3) visible. The last couple lines of the screen output is a read back of
the filename used for the analysis and notification that the script has completed execution
and has stopped processing.
4.5. Running of The Second-Order Model Script

We have just seen how to select a dataset and interpret the visual and summary
results for the mean eigenvalue solution. What about the linear regression second-order
model (20M) and the table of coefficients?

The two approaches use an identical user interface for input and output. There are
a few subtle differences within the code, mostly due to what lookup table and how the

mean eigenvalues are determined; otherwise, each version shares the nearest neighbors

90



search, interpolation of surrogate curves, and data plotting routines. To distinguish the
graphical results, the titles of every figure include what type of solution was used to
produce it (MEV or 20M).

We conclude this section with an example of output from the 20M solution
approach. It is shown here in Figure 4.5 using the Forest Fires data from Figure

4.5, this time without the bumper stickers.

20M Interpolated Solution of Dataset "ForestFires" (517x13)

35} Scree Line |
Horn's Curve
Kaiser's Criterion (K1) = 1.0
3r @®@ 4 iL>Hom'sCunve>K1 ]
< 8 X< Hom's Curve < K1
25F ® 1 K1<i<Hom'sCuve |

Eigenvalue (2.)

0 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 &5 6 7 8 9 10 11 12 13
Component (Ci)

Figure 4.5. Interpolated second-order model (20M) solution of Horn s test of the
ForestFires dataset. Details are similar to those found in Figure 4.3.

4.6. Challenges

Constructing an algorithm that handles data of different sizes is not problematic;
handling data within stated constraints (min/max bounds in the lookup table, no
underdetermined sets in this case) requires more methodical planning and logic in the

scripts but is still controllable. The greater unknown is the format of the data existing in
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the real-world: Weak or strong correlation, multicollinearity, non-constant variance,
different probability distributions are all valid concerns. A perfect solution does not
exist; a calculated manner in which these issues are handled is a reasonable goal. An
attempt was made to stress the algorithms presented herein using a representative sample
of both size and variety of data. Certainly not every possible configuration of data was
presented to the algorithm for testing. Therefore, the author anticipates that unexpected
results in the future may be a possibility due to the behavior of the eigenvalues affected
by characteristics of the sample data. Part of being an analyst is discovery through
exploration; situations just described are opportunities to investigate underlying causes.

4.6.1. Lookup Table Size

Presently, the limiting factor in application is the size of the lookup table. The
only way to increase its size is to run Monte Carlo simulation on unmapped (p, n) pairs in
the study region. As the data size increases, particularly as the number of variables
grows, it will take much longer to add each new row to the lookup table. Expanding the
(p, n) region-of-interest is possible and is made more attractive given that the 20M is
comparable in performance to the MEV. It is straight-forward to process the least-
squares fitted coefficients and augment the lookup table. The implication is the table of
mean eigenvalues will not advance beyond what currently is in the application, but given
the ancillary goal of creating as small a data footprint as possible, the omission of future

entries to T is plausible.
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4.6.2. Software Required

Not every computer runs MATLAB and not every practitioner is well-versed in
MATLAB usage. As such, the target audience is presently only MATLAB users.
Fortunately, MATLAB output is used easily in other applications:

- Graphs can be shared as metafiles or a number of picture formats and
included as objects in MS Word® and MS PowerPoint®.

- All Command Window text can be copied and pasted as editable text and
MATLAB variables can be copied from the Workspace and moved to MS
Excel® for editing in a spreadsheet (the opposite is also true).

- A low-tech but workable approach is to copy and paste the Horn’s test data
into an Excel spreadsheet and use the graphing capability of Excel to
reproduce the figure in MS Office®.

A desirable solution is cross-product porting of the script to Java® or MS Office.
The MathWorks produces a free compiler and packager called MCR (MATLAB
Compiler Runtime). This author has not worked with MCR but it appears to offer an
excellent way to share .m files among users who do not have access to MATLAB.

4.7. Chapter Summary

The results achieved quite satisfactory and meet the stated research objective: To
develop an accurate tool for determining the number of components to retain. The
additional objectives of automating the tool to remove unwarranted subjective evaluation
of the results were also reached. Additionally, the non-primary objectives of

incorporating common visual elements of PCA stopping rules (the scree line and Kaiser’s
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criterion) to assist the practitioner were also met.

Finally, the MATLAB user interface developed makes easy work of loading data
and then provides summary results for the dimensionality estimate and any contested
components (that is, Horn’s test and Kaiser’s criterion arrive at different conclusions).
The user is provided information regarding the total amount of original variance
explained by the dimensionality assessment and, if there are contested components, what
additional variance the contested components represents.

Comparisons of both solution algorithms are thus far identical in both visual
analysis and variance summary findings. The side-by-side results of each comparison are
not included in this chapter; please see Appendix I: Results for Sampled Datasets. For a
line-by-line list of all the computer code leading to a result described by this thesis,

please see Appendix II: MATLAB Scripts.
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V. Discussion

5.1. Relevance of the Current Investigation

Automation of Horn’s method provides a powerful tool for PCA. During the
literature review, several authors published findings in regard to the accuracy of various
component extraction stopping rules: Horn’s technique received remarks verifying a high
level of component identification accuracy.

In contrast, the most widely-used stopping rule is Kaiser’s K1 criterion: Retain
components with an eigenvalue greater than or equal to one, discard those less than that.
A simple analogy for this thinking (and there are certainly others) is one would not read a
book and then write a lengthier summary than the book is long, so why keep a factor that
has less summarizing power than the variable it is meant to transform? This is where
science bows to art; the analyst is responsible to his practice to make an informed
decision about the purpose of the analysis. There are qualitative aspects that have to
augment all of these stopping rules.

5.2. Conclusions of Research

The author of this thesis is of the opinion why Horn’s procedure is not used more
often is it requires more preparatory work by the analyst and, to this author’s knowledge,
popular statistics software packages do not offer direct computation of it. Lack of
understanding regarding the black box nature of specialized commercial software leaves
one at a disadvantage when unique challenges require unique solution strategies — if the
only tool in the tool shed is a hammer, suddenly all the problems appear to have nails for
solutions. It is likely not everyone has the time, skill, or impetus to pursue application of
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Horn’s test for an individual problem. It is hoped that the work shared in this thesis
permits others to gain insight into multivariate analysis solution techniques they might
not previously been inclined to explore.

5.3. Limitations

Only eleven datasets available in the public domain were tested and it is possible
that data of unknown configurations could present pathological scree lines. One such
case (and there are likely others) is a scree line that resembles a sideways view of a set of
sloping steps that may hop back and forth across Horn’s curve. Such a dataset probably
exists — it meets the stated assumptions for k, is not underdetermined, is monotonically
decreasing — and will present dimensionality results that have not yet been considered.

It is also anticipated a case exists in which the MEV and 20M solutions may
disagree in their conclusions; that is, each algorithm presents a different estimate of
dimensionality. For instance, datasets featuring shallow intersection angles between
Horn's curve and the scree line (i.e., almost parallel along some interval of components)
will likely to lead to under extraction of components by the 20M. Since under extraction
discards information, it is this author’s recommendation that, should this situation be
encountered, the MEV strategy be used to verify the 20M dimensionality assessment.
5.4. Future Work/Further Research

1) Confirmatory analysis of the accuracy of the Horn’s test algorithm should be
an immediate next step. This can be accomplished by structuring of random data with

known dimensionality and then presenting it to the algorithm as a sampled dataset.
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2) Creation of a routine to handle limited problems beyond what the lookup table
can immediately reference. A dry run on a real-world dataset of 112,000+ observations
on 121 variables was successfully completed in under five minutes of processing time.
There is certainly room to expand in solving small p, large n problems without adverse
expenditure of computer resources while analyses await.

3) Combining the MATLAB script with a graphical user interface capable of
giving easier access to the results is desirable.

4) Artificial neural networks present possibilities to learn the region-of-interest. If
so, not only can estimates of dimensionality be determined for (p’, n’) but the need to
have ready the (p, n) lookup table is eliminated.

5) Principal components analysis is a gateway to other multivariate analysis
techniques. Expanding the code, or modularizing it, so that other methods (specifically

factor analysis) can access the dimensionality estimation extends application.
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Appendix I: Results for Sampled Datasets

The University of California-Irvine Center for Machine Learning and Intelligent Systems
data repository (http://archive.ics.uci.edu/ml/) was the source used for real-world data.
Without the resources of the UCI website, this thesis would have been limited in scope.

During the course of experimentation, some data would not complete
eigendecomposition due to NaN, Inf, or non-numerical data types (missing entries or
string characters). Trimming of data occurred at the minimum level necessary to achieve
functionality. Wherever possible, rows (observations) were deleted in lieu of columns
(variables). As such, these truncations may result in smaller sizes of the named datasets
than from what is found elsewhere or used by researchers for other analyses.

The bibliography lists contributing donors or the stewards of such data; however,

in an effort to invite additional exploration, the URLs of each dataset is given here:

Table 5.1. Web addresses of each dataset used to test the algorithms.

Dataset Web Address (URL)

Forest Fires http://archive.ics.uci.edu/ml/datasets/Forest+Fires

Glass http://archive.ics.uci.edu/ml/datasets/Glass+Identification
Parkinsons http://archive.ics.uci.edu/ml/datasets/Parkinsons

SECOM http://archive.ics.uci.edu/ml/datasets/SECOM

Seeds http://archive.ics.uci.edu/ml/datasets/seeds

Semeion http://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
Steel Plates http://archive.ics.uci.edu/ml/datasets/Steel+Plates+Faults
%Lig{ﬁgf)t Cancer http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%280riginal%29
Wines 1 http://archive.ics.uci.edu/ml/datasets/Wine

Wines 2 http://archive.ics.uci.edu/ml/datasets/Wine+Quality

Iris http://archive.ics.uci.edu/ml/datasets/Iris
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Plotting all curves...Done!
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Dimensionality is estimated at 4 principal components by

Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.

(Additional criteria == qualitative and quantitative

aspects of the study that are particular to a dataset,

purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0637 <--

Proportion of total variance explained by Horn's = 58.11%.
Additional proportion of total variance explained by the

contested "between the curves" components: 8.18%.

If 1 contested components are included, proportion = 66.29%.

>k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k 5k 3k 5k 5k 5k 3k >k 3k 3k >k >k 3k %k >k >k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 3k 5k >k >k >k >k >k >k >k >k 3k 3k >k %k %k %k %k %k %k %k %k %k %k >k k >k k >k >k k

THE FILENAME USED IN THIS ANALYSIS IS ForestFires

End of processing.

Figure AIO1.

Dataset Forest Fires (Cortez & Morais, 2007)
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MEYV Interpolated Solution of Dataset "Glass™ (214x10)

-> Please make a selection (1-10) or (©): 5

Getting eigenvalues of (210x7) sampled data...Done!

Plotting all curves...Done!
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Dimensionality is estimated at 2 principal components.

Proportion of total variance explained = 88.98%.

There are no contested components.
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End of processing.
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Figure Al02. Dataset Glass (Frank & Asuncion, 2010)




Eigenvalue ()

MEYV Interpolated Solution of Dataset "Parkinsons™ (195x24) -> Please make a selection (1-10) or (0): 3
e Getting eigenvalues of (195x24) sampled data...Done!

1 gsii%:ie 1 Plotting all curves...Done!
Kaiser's Criterion (K1): 10 3k 3k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k %k 3k %k %k 3k k k k Summar\y 3k 3k 3k 3k >k 3k 3k >k 3k 3k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 3k 3k %k 3k >k Kk
@ 4 3> Hor's Curve > K1 Dimensionality is estimated at 4 principal components by
10 © 19 L <Hom's Curve <K1 ] Horn's test. There are a total of 1 eigenvalues below Horn's
® 1 K1<h<Homs Curve curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative

aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0657 <--

Proportion of total variance explained by Horn's = 78.73%.
Additional proportion of total variance explained by the
contested "between the curves" components: 4.44%.

1 1 1 1 L 1 1
12345678 91011121314151617 181920212223 24 If 1 contested components are included, proportion = 83.17%.
Component (C ) sk ok sk ok sk ok ok sk ok ok ok sk sk sk ok ok sk ok sk ok sk sk sk sk ok sk ok sk sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk ok sk sk ok skok sk ok ok ok ok skok skok skok sk ks ok ok
I

THE FILENAME USED IN THIS ANALYSIS IS Parkinsons

T0T

Eigenvalue (%)

20M Interpolated Solution of Dataset "Parkinsons” (195x24)
Scree Line
Horn's Curve i
Kaiser's Criterion (K1) = 1.0
@ 4 A=Hom's Curve = K1

End of processing.

10r 2 19 L < Hom's Curve < K1
® 1 K1<)<Hom's Curve
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Component (C.)

Figure AI03. Dataset Parkinsons (Little, McSharry, Roberts, Costello, & Moroz, 2007)
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MEYV Interpolated Solution of Dataset "SECOM" (1380x420)

25 Scree Line H
Hom's Curve
Kaisers Criterion (K1) =1.0
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Component (C.)

-> Please make a selection (1-10) or (©): 3

Getting eigenvalues of (195x24) sampled data...Done!

Plotting all curves...Done!

3k 3k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k %k 3k %k %k 3k k k k Summapy 3k 3k 3k 3k >k 3k 3k >k 3k 3k >k 3k >k 3k >k >k 3k >k 3k >k >k 3k >k 3k 3k %k 3k >k Kk
Dimensionality is estimated at 4 principal components by

Horn's test. There are a total of 1 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative

aspects of the study that are particular to a dataset,

purpose of the study, and analyst selection.)

-->Component #: 5 Eigenvalue: 1.0657 <--

Proportion of total variance explained by Horn's = 78.73%.
Additional proportion of total variance explained by the

contested "between the curves" components: 4.44%.

If 1 contested components are included, proportion = 83.17%.

3k 3k 3k 5k >k 5k >k 3k ok >k ok >k %k 5k >k 5k >k 3k >k >k >k >k 3k >k 3k 5k >k 5k >k 3k >k >k 5k >k 5k >k >k 5k >k %k >k >k >k >k %k 5k >k 3k >k 3k >k >k >k >k 3k >k >k %k >k >k >k >k >k >k k ok

THE FILENAME USED IN THIS ANALYSIS IS Parkinsons

End of processing.

Figure AlO4. Dataset SECOM (Frank & Asuncion, 2010)
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Eigenvalue (%)

MEV Interpolated Solutlon of Dataset "8eeds" [210x7]

Scree Line
Horn's Curve

@ 2 L >Hom's Curve > K1
2 5 i < Hom's Curve < K1

Kaisers Criterion (K1) =1.0

\

Componem

-> Please make a selection (1-10) or (©): 5

Getting eigenvalues of (210x7) sampled data...Done!

Plotting all curves...Done!

3k 3k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k %k >k >k %k %k %k %k %k k Summar\y 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k %k 3k >k >k 3k %k %k %k %k %k %k %k k k
Dimensionality is estimated at 2 principal components.

Proportion of total variance explained = 88.98%.

There are no contested components.
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THE FILENAME USED IN THIS ANALYSIS IS Seeds

End of processing.
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Figure AI05. Dataset Seeds (Kulczycki, Kowalski, Lukasik, & Zak, 2012) (Charytanowicz & Niewczas, 2012)
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MEYV Interpolated Solution of Dataset " Semeion™ (1593x266)

& T T T T T T T T
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-> Please make a selection (1-10) or (©): 6

Getting eigenvalues of (1593x266) sampled data...Done!

Plotting all curves...Done!

>k 3k >k 3k >k 3k 3k >k 3k >k >k 3k >k 3k 3k 3k 5k >k 3k 5k >k 5k %k %k >k k k Summapy 3k >k 3k 3k 3k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k %k >k %k %k *k %k %k k
Dimensionality is estimated at 38 principal components by
Horn's test. There are a total of 15 eigenvalues below Horn's
curve and greater than K1. These eigenvalues should be further
evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative

aspects of the study that are particular to a dataset,

purpose of the study, and analyst selection.)

-->Component #: 39 Eigenvalue: 1.4770 <--
-->Component #: 40 Eigenvalue: 1.4516 <--
-->Component #: 41 Eigenvalue: 1.3701 <--
-->Component #: 42 Eigenvalue: 1.3398 <--
-->Component #: 43 Eigenvalue: 1.3192 <--
-->Component #: 44 Eigenvalue: 1.2618 <--
-->Component #: 45 Eigenvalue: 1.2463 <--
-->Component #: 46 Eigenvalue: 1.1977 <--
-->Component #: 47 Eigenvalue: 1.1289 <--
-->Component #: 48 Eigenvalue: 1.1103 <--
-->Component #: 49 Eigenvalue: 1.0926 <--
-->Component #: 50 Eigenvalue: 1.0761 <--
-->Component #: 51 Eigenvalue: 1.0497 <--
-->Component #: 52 Eigenvalue: 1.0218 <--
-->Component #: 53 Eigenvalue: 1.0073 <--

Proportion of total variance explained by Horn's = 70.17%.
Additional proportion of total variance explained by the

contested "between the curves" components: 6.82%.

If 15 contested components are included, proportion = 76.99%.
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THE FILENAME USED IN THIS ANALYSIS IS Semeion

End of processing.

Figure Al06. Dataset Semeion Handwritten Digit (Semeion Research Center for the Science of Communication, 2008)
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GoT

Eigenvalue (%)

MEV Interpolated Solution of Dataset " SteelPlates” (1941x25) -> Please make a selection (1-10) or (9): 7
R e e Getting eigenvalues of (1941x25) sampled data...Done!
8 Scree Line H .
Horm's Curve Plotting all curves...Done!
- Kaisers Criterion (an 10| 3k 3k 3k 3k 3k 3k >k 3k >k >k 5k >k 5k >k >k 5k >k 3k >k >k >k %k k >k k 5k %k SUmmar‘y 3k 3k 3k 3k 3k 3k >k 3k 5k >k 3k >k 3k 3k 3k 3k >k 3k >k >k >k >k %k >k >k sk >k k ok k
@ 6 > Hom's Curve = K1 Dimensionality is estimated at 6 principal components by
6l < 18 L <Hom's Curve < K1 [ Horn's test. There are a total of 1 eigenvalues below Horn's
® 1 K1<h<Homs Curve curve and greater than K1. These eigenvalues should be further
J evaluated against additional criteria for usefulness.
(Additional criteria == qualitative and quantitative
g aspects of the study that are particular to a dataset,
purpose of the study, and analyst selection.)
-->Component #: 7 Eigenvalue: 1.0076 <--
Proportion of total variance explained by Horn's = 77.74%.
Additional proportion of total variance explained by the
P T contested "between the curves" components: 4.03%.
12345678 910111213141516171819202122232425 If 1 contested components are included, proportion = 81.77%.
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THE FILENAME USED IN THIS ANALYSIS IS SteelPlates
20M Interpolated Solution of Dataset " SteelPlates™ (1941x25) .
End of processing.
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Figure AlIQ7. Dataset Steel Plates Faults (Semeion Research Center for the Science of Communication, 2010)



MEYV Interpolated Solution of Dataset "WIBreastCancer" (699x9) -> Please make a selection (1-10) or (9): 8
' ' ‘ ‘ : . — : : Getting eigenvalues of (699x9) sampled data...Done!
Scree Line .
61 Horm's Curve N Plotting all curves...Done!
Kaiser's Criterion (KU: 10 3k 3k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k 3k >k 3k >k 3k %k >k >k %k %k %k %k %k k Summar\y 3k 3k 3k 3k 3k 3k >k 3k 3k >k 3k >k 3k 3k 3k 3k >k 3k >k >k 3k %k 3k %k %k 3k %k %k *k k
5l ® 1 %>Homs Curve>K1 || Dimensionality is estimated at 1 principal components.
@ 8 i< Hom's Curve < K1 Proportion of total variance explained = 67.52%.
_ There are no contested components.
5 4 1 3k 3k 3k 5k >k 5k >k 3k ok >k ok >k 5k ok >k 5k >k 3k >k >k >k >k 3k >k >k 5k >k 5k >k 3k >k >k >k >k %k 5k >k 5k >k %k >k >k >k >k %k >k >k 5k >k 3k >k >k >k >k >k >k %k >k >k %k %k %k *k >k k *x
@
?:’U THE FILENAME USED IN THIS ANALYSIS IS WIBreastCancer
2 3l 1
S End of processing.
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Component(cl)
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20M Interpolated Solution of Dataset "WIBreastCancer” (699x9)
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Figure AI08. Dataset Wisconsin Breast Cancer Study (Original) (Wolberg & Mangasarian, 1990) (Wolberg W. H., 1992)
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Eigenvalue ()

MEYV Interpolated Solution of Dataset "Wines1" (178x13)

Scree Line
Horn's Curve |
Kaiser's Criterion (K1) =1.0
@ 3 L>Hom's Cuve » K1 |
10 i < Hom's Curve < K1

-> Please make a selection (1-10) or (©): 10

Getting eigenvalues of (1599x11) sampled data...Done!

Plotting all curves...Done!
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Dimensionality is estimated at 4 principal components.

Proportion of total variance explained = 70.81%.

There are no contested components.
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THE FILENAME USED IN THIS ANALYSIS IS Wines2

End of processing.
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Figure AI09. Dataset Wines (Frank & Asuncion, 2010)
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MEYV Interpolated

Solution of Dataset "Wines2" (1599x11)

-> Please make a selection (1-10) or (©): 10

Getting eigenvalues of (1599x11) sampled data...Done!

Plotting all curves...Done!
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Dimensionality is estimated at 4 principal components.

Proportion of total variance explained = 70.81%.

There are no contested components.

3k 3k 3k 5k >k 5k >k %k ok >k ok >k %k ok >k 5k >k 3k >k >k 5k >k %k 5k >k 5k >k 3k >k 3k ok >k %k >k 3k 5k >k 3k >k %k >k >k >k >k %k 5k >k 5k >k >k >k >k >k >k %k >*k >k >k %k >k %k %k *k Kk k

THE FILENAME USED IN THIS ANALYSIS IS Wines2

End of processing.

35 1
Scree Line
Horn's Curve
3F Kaiser's Criterion (K1) = 1.0 |
@ 4 L>Hom's Curve > K1
a5l 2 7 L <Hom's Curve < K1
=
g of .
©
=
o
o 15¢ 1
L
1
05F B
U 1 1 1 1 1 1 1 1 1
1 2 3 5 6 7 8 9 10 1
Componem(cg
20M Interpolated Solution of Dataset "Wines2" (1599x11)
3 5 _I T T T T T T T T T I_
. Scree Line
Horn's Curve
3F Kaiser's Criterion (K1) = 1.0 |
@ 4 %>Hom's Curve = K1
25l 7 L<Hom'sCurve <K1 (|
=
L ot |
™
=
o
o 151 1
L
1
0.5 4
ol 1 1 1 1 1 1 1 1
1 2 3 5 6 7 8 9 10 1
Componem(CQ
Figure Al10.

Dataset Wine Quality (Cortez, Cerdeira, Almeida, Matos, & Reis, 2009)
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MEYV Interpolate

d Solution of Dataset "Iris" (150x4)

-> Please make a selection (1-10) or (©): ©

Please enter the filename (script assumes .mat)

--> Iris

The selected filename has data small enough for a direct
calculation of Horn's curve.

Getting eigenvalues of (150x4)...Done!

Plotting all curves...Done!
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Dimensionality is estimated at 1 principal components.

Proportion of total variance explained = 72.77%.

There are no contested components.
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THE FILENAME USED IN THIS ANALYSIS IS Iris

End of processing.
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. Dataset Iris (Frank & Asuncion, 2010)




Appendix Il: MATLAB Scripts

Main Script: HornsMethodRandomMEV.m

%0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not
Sreflect the official policy or position of the United States Air Force,
%Department of Defense, or the United States Government.

%$This material is declared a work of the U.S. Government and is not subject
%to copyright protection in the United States.

%21 March 2013

o
o

Graph the eigenvalue curves for one coordinate pair. This script

references a table of pre-determined, sorted mean eigenvalues and

%then interpolates to trap the (p',n') pair in the information in the
table. Various configurations that may be presented by a user to the
script are discussed below.

%initialize the workspace environment

close all; clear all; clc

%$initialize global variables--they are in the datafile

global tablex ssizep ssizen; %these variables are global in nature

load LookupTable.mat

maxp = max (tablex(:,1)); %the largest variable value in the data
minp = min (tablex(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
$PCA on less than 5 variables?!?

maxn = max (tablex(:,2)); %$largest # of observations in the mapped data

minn = min(tablex(:,2)); $smallest # of obs in the mapped data

cr = sprintf('\n'"); %carriage return variable; use with 'disp'

%display opening message

disp(['This script will find Horn''s Curve as described by Monte ' cr...
'Carlo simulation generated and sorted mean eigenvalues. ''cr...
'This version evaluates random data of selected (p'',n''). ''cr...
'For use with actual, real world datasets, see script ''cr...
'"HornsMethodSampled.']); cr;

disp(['The input values must be within these ranges: ''cr...
! 1)

fprintf (' # of variables (p) --> {%d,%d} \n',minp,maxp)

fprintf (' # of observations (n) --> {%d,%d} \n',minn,maxn)

disp ([’ ''cr...
'Also, make sure p is not less than n. ']); cr; cr;

$***check for input violations (out of range on p or n and n < p)***

$set datavalid flag to 'false'. Assume the following:

paramvalid = false; %$valid input relation for p to n hasn't been rec'd
pvalid = false; %valid variable input has not been entered

nvalid = false; %valid observations input has not been entered
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while paramvalid == false %assume invalid parameters (relation of p,n)

while pvalid == false %assume invalid p value (relation to tablex)
fprintf ('Which variable (p) to graph?\n'")
getp = input('--> "); Sthe variable of interest (pprime)
if getp < minp || getp > maxp; S%check variables
fprintf ('-->Check (p). Selection is out of range.\n')
elseif getp >= minp && getp <= maxp
pvalid = true;
end
end
while nvalid == false %assume invalid n value (relation to tablex)
fprintf ('How many observations (n)?\n')
getn = input('--> "); Sthe observations of interest (nprime)
if getn < minn || getn > maxn; S%check variables
fprintf ('-->Check (n). Selection is out of range.\n')
elseif getn >= minn && getn <= maxn
nvalid = true;
end
end
if getp > getn; %check n and p relation
disp(['***There are more variables (p) than observations (n)' cr...
'in this selection. The lookup table is constrained ' cr...
'to no less than p = n. Press ''ctrl''+''pause/break''' cr...
'if you need to stop this script.***']); cr; cr;
pvalid = false; %$give user a chance to reenter p
nvalid = false; %give user a chance to reenter n
elseif getp <= getn %&& pvalid == 1 && nvalid == 1
paramvalid = true; S%good input parameters to the lookup table;
end $exit input error checking

end

%
A KA KA A A A KA A A A K AA KA I A KAA KA I A IAA KA I AT I AA I A I AA I AT I A I AR AR A I AKX I A A Ak A Fh Ak hox

%**************‘k‘k‘k‘k****MATLAB Varlables usage**********************‘k‘k‘k*****
%$---NOTE: All code originally written in this script. Most of the variable

referencing has been moved to functions that handle the scenarios listed
%in the box below this one.-----—-=---------------———
%l

p' = "variable", 'n' = "observations", 'filename' = name of data file
% (not the name of the data matrix which is always X, by my default)
$'mev' = mean eigenvalue reference
%'getp' = variable we're going to find (user-supplied); consider p-prime
'getn' = observations we're going to find (user-supplied); n-prime

row = where rows of variables and observations are found in the data
%X = data matrix. Lookup table reference tablex is a rename of X

%S = child of X-->the nearest neighbors of variables. Used inside fx.

%Y = child of S-->the row entries of the nn observations on getn (in

$fx)

%$'nn' --> "nearest neighbor" in all instances.

% --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above)
$'ind' = "index" (of a row or column)
%*****~k***********‘k‘k**‘k‘k‘k‘k‘k*****************‘k‘k‘k‘k‘k‘k‘k‘k***********************
%$There are seven scenarios that (p',n') that can be presented:

%$1) p' not in table, n' not in table (both in range)-->interp p',n'

%2) p' not in table, n' in table (both in range)-->interp p', use n

%$3) p' in table, n' not in table (both in range)-->use p, interp n'
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p' in table, n' in table (both in range)-->use p,n

p' out of range, n' in range-->data below diagonal (illegal combo)

p' in range, n' out of range-->largest recorded obs curve for interp p'
p' out of range, n' out of range-->provide largest obs for largest p

Ak hkhkhkhkkhkkhkkhkkhkhhhkhkhkhkhhrhrhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhhhhkhkhkhkhhhhkhhkhkhkhkhhhhkhkhkhkhkkhkkhkhkhrhrkrrxxx*x
**x*]1ook for the nearest neighbor VARIABLES in the lookup table****xxxxx*
rp] = find(tablex(:,1)==getp); %look for the input variable in the table;
curves,nnup,nnlp,nnun,nnln] = findcurves (getp,getn,minp, maxp,minn,maxn) ;
GFRFFXXxAAACall MCS on (p',n') as a proof-of-concept check****xxxx&kddkkx
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn)
[mevvec] = EigenMean (getp,getn,100); %mean eigenvalue vector for (p',n')
$mevvec is a matrix of row vectors

o o oo

o

4)
5)
6)
)
* Kk

— — o0

fprintf ('Done!\n")

o
°

$plot the variables

fprintf ('Plotting all curves...'")

%create some new variables to increase graphing readability
minobs = nnln;

maxobs = nnun;

%set plot boundaries

xmin = 0.8; %left bound for x-axis

xmax = nnlp + 0.2; Sright bound for x-axis

ymin = 0; %lower bound for y-axis

ymax = curves(l,1); Supper bound for y-axis; largest mean ev in data

SR A A AKX K AKXk Ak kX k Ak hxkhkxkrxkgat plot VeCLOrs*x* hxkhkhrkhrkhkhrkhrhhkhrkhrkrkhx

%$remaining variables have already been found; listed here for reference in
$terms of graphing ease. Order is the highest plot to the lowest plot

eind = size(curves,2); gnumber of columns in the curve
curvel = curves(l,:); nnun mev's for nnup

curve?2 = curves (2, :); $interpolated mev's for getn on nnun
curve3 = curves (3, :); gnnun mev's for nnlp

curve4 = curves(4,:); %interpolated mev's for getp

curve5 = mevvec (l:eind); $from the MCS run

curve6 = curves (5,:); gnnln mev's for nnlp

curve7 = curves (6, :); %interpolated mev's for getn on nnln
curve8 = curves (7, :); snnun mev's for nnlp

xx = l:eind; %$x-values; common to all plots
figure(l); box on; hold on;
axis([xmin xmax ymin ymax + 0.5]);

set (gca, 'XTick',l:getp); %display only integers on x axis
if getp > 30 %keep scaling under control

set (gca, 'XTick', floor (linspace(l,nnlp,10)))
end
plot (xx,curvel, 'bs-"', "LineWidth', 2) $tabled mev's (nnup,nnln)
plot (xx,curve2, 'b:") %upper interp model
plot (xx,curve3, 'bo-"', 'LineWidth', 2) Stabled mev's (nnup,nnun)
plot (xx,curve6, "ks-"', 'LineWidth', 2) $tabled mev's (nnlp,nnln)
plot (xx,curve7, 'k:") %$lower interp model
plot (xx,curve8, 'ko-"', "LineWidth', 2) %tabled mev's (nnlp,nnun)
plot (xx,curved, 'r:d") $Interpolated solution
plot (xx,curveb, 'r', 'LineWidth', 2) %$Actual eigenmean solution
% (A) goes here if needed. See bottom of script. All plot lines above.
line ([xmin xmax], [l 1], 'Color','k"); %$Kaiser's criterion

o
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$chart details
xlabel ('Component (C i)', 'FontSize',12)
ylabel ('$$S\mathsf{\bar \lambda}$s', ...
'interpreter', 'latex', 'fontsize',14)
title(['MEV Interpolation at Point (',...
int2str (getp), ', ',int2str(getn), ') '], 'FontWeight', "bold"', ...
'FontSize',12)

% (B) goes here if needed. See bottom of script. Comment title above here.
% (C) goes here if needed. See bottom of script.
$break %uncomment if needed to run plain Horn's curve
legend (...
['"Upper Nearest Neighbor (',int2str (nnup),',’',int2str(nnln

4

), ),
'Upper Interpolated Curve (',int2str (nnup),',',int2str (getn)
'Upper Nearest Neighbor (', int2str(nnup),',',int2str (nnun)

), )

'Lower Nearest Neighbor (', int2str (nnlp ,'",int2str(nnln

[
[
[
[

I4 I4 r -
'Lower Interpolated Curve (',int2str(nnlp),’',',int2str(getn),"')"'],...
['Lower Nearest Neighbor (',int2str (nnlp),"',',int2str(nnun), ") '1l, ...
['"Interpolated Solution (',int2str(getp),',"',int2str(getn), ") '], ...
['Horn''s Algorithm Soln (',int2str (getp),',"',int2str(getn), ") '], ...
'Location', '"NorthEast')

hold off

fprintf ('Done!\n")
fprintf ('***End of processing.***\n\n')

o
°

oe

end of program

Extra stuff just to run a plain Horn's Curve
(

(

oe

% (A)plot (xx,curved, 'r', 'LineWidth', 2) %$Interpolated solution
% (B)title(['Random Data of Size (',...
% int2str(getn), 'x',int2str(getp), ') '], 'FontWeight', 'bold’', ...

o

'FontSize',12)
(C)legend ('Horn''s Curve', 'Kaiser''s Criterion (K1)', 'Location', 'NorthEast')

o
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Main Script: HornsMethodRandom20OM.m

%$0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
%$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%$The views expressed in this thesis are those of the author and do not
$reflect the official policy or position of the United States Air Force,
%$Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject
$to copyright protection in the United States.

%21 March 2013

o

%Graph the eigenvalue curves for one coordinate pair. This script
Sreferences a table of pre-determined, sorted mean eigenvalues and

%then interpolates to trap the (p',n') pair in the information in the
$table. Various configurations that may be presented by a user to the
%$script are discussed below.

$However, it differs from its ev multiplots MeanEV cousin in that it uses
%$the 20M coefficients and not the mean eigenvalues for direct reference***

o)

%initialize the workspace

close all; clear all; clc

%$initialize global variables--they are in the lookup table

global tablexbeta ssizep ssizen; $these variables are global in nature

load LookupTableCoeffs.mat

maxp = max(tablexbeta(:,1)); $the largest variable value in the data

minp = min (tablexbeta(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
%$PCA on less than 5 variables?!?

maxn = max (tablexbeta(:,2)); %$largest # of observations in the mapped data

minn = min(tablexbeta(:,2)); %smallest # of obs in the mapped data

cr = sprintf('\n'); %carriage return variable; use with 'disp'

o
o

%display opening message

disp(['This script will find Horn''s Curve as described by the ''cr...
'linear regression second-order model coefficients. ''cr...
'This version evaluates random data of selected (p'',n''). ''cr...
'For use with actual, real world datasets, see script ''cr...
'HornsMethodSampled20M. ']); cr;

disp(['The input values must be within these ranges: ''cr...
' 1)

fprintf (' # of variables (p) --> {%d,%d} \n',minp,maxp)

fprintf (' # of observations (n) --> {%d,%d} \n',minn,maxn)

disp([' 'cr...
'Also, make sure p is not less than n. ']); cr; cr;

$***check for input violations (out of range on p or n and n < p)***

%$set datavalid flag to 'false'. Assume the following:

paramvalid = false; $valid input relation for p to n hasn't been rec'd

pvalid = false; %valid variable input has not been entered

nvalid = false; %valid observations input has not been entered

while paramvalid == false %assume invalid parameters (relation of p,n)
while pvalid == false %assume invalid p value (relation to tablex)
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fprintf ('Which variable (p) to graph?\n')

getp = input('--> "); %the variable of interest (pprime)
if getp < minp || getp > maxp; %check variables
fprintf ('-->Check (p). Selection is out of range.\n')
elseif getp >= minp && getp <= maxp
pvalid = true;
end
end
while nvalid == false %assume invalid n value (relation to tablex)
fprintf ('How many observations (n)?\n')
getn = input('--> "); %the observations of interest (nprime)
if getn < minn || getn > maxn; %$check variables
fprintf ('-->Check (n). Selection is out of range.\n')
elseif getn >= minn && getn <= maxn
nvalid = true;
end
end
if getp > getn; %check n and p relation
disp(['***There are more variables (p) than observations (n)' cr...
'in this selection. The lookup table is constrained ' cr...
'to no less than p = n. Press ''ctrl''+''pause/break''' cr...
'if you need to stop this script.***']); cr; cr;
pvalid = false; %give user a chance to reenter p
nvalid = false; %give user a chance to reenter n
elseif getp <= getn %&& pvalid == 1 && nvalid == 1
paramvalid = true; %good input parameters to the lookup table;
end %exit input error checking

oe

Ak hkhhkhkhkhkhkhkhkhhkhhhhhkh bk bk hkhhk bk kb kb kb kb hkhr bk rhkhk kb hkrhkhkhkhkhkhhkhkhkhkrhkhkrhkrhkhkrhxx
%**********************MATLAB Variables usage******************************
%$---NOTE: All code originally written in this script. Most of the variable

referencing has been moved to functions that handle the scenarios listed
in the box below this one.-—--------------"-"—"—-"—"—-"—"—~—~—"—~—~—~—~——
A\l

p' = "variable", 'n' = "observations", 'filename' = name of data file
% (not the name of the data matrix which is always X, by my default)
%'mev' = mean eigenvalue reference
$'getp' = variable we're going to find (user-supplied); consider p-prime
%'getn' = observations we're going to find (user-supplied); n-prime
$row = where rows of variables and observations are found in the data
%X = data matrix. Lookup table reference tablex is a rename of X
%S child of X-->the nearest neighbors of variables. Used inside fx.
%Y = child of S-->the row entries of the nn observations on getn (in
$fx)
$'nn' --> "nearest neighbor" in all instances.
% --> adding 'u' = "upper", 'l' = "lower", or 'p' and 'n' (see above)
$'ind' = "index" (of a row or column)
%**************************************************************************
%$There are seven scenarios that (p',n') that can be presented:
%1l) p' not in table, n' not in table (both in range)-->interp p',n'
%2) p' not in table, n' in table (both in range)-->interp p', use n
%3) p' in table, n' not in table (both in range)-->use p, interp n'
%4) p' in table, n' in table (both in range)-->use p,n
%5) p' out of range, n' in range-->data below diagonal (illegal combo)
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6) p' in range, n' out of range-->largest recorded obs curve for interp p'
$7) p' out of range, n' out of range-->provide largest obs for largest p
khkhkhkhkhkkhkkhkhkhkkhkhhhhkhhhhhhh bbb hhhhhhhkhhkhhhkhkhhhhhkhkhkhhhhhhkhhhhhkhhhhkhkhkhkhkhkhkhkrrrrxxx
xx*xx*]ook for the nearest neighbor VARIABLES in the lookup table*****xkx*x
rp] = find(tablexbeta(:,1l)==getp); %look for the input variable in the
table;
gmevsolnone is the function " (m)ean (e)igen(v)alue (sol)utio(n) (one)"
%it does all the work for nearest neighbors in variables and observations
[curves,nnup,nnlp,nnun,nnln] = findcurves20M (getp,getn,minp,maxp,minn, maxn) ;
FFRFFXxxXXAXCall MCS on (p',n') as a proof-of-concept check****xxxxkdddkkx
fprintf('Calling EigenMean for mean eigenvalues of (%d,%d)...',getp,getn)
[mevvec] = EigenMean (getp,getn,100); $mean eigenvalue vector for (p',n'")
$mevvec is a matrix of row vectors
fprintf ('Done!\n")

°

$plot the variables

fprintf ('Plotting all curves...')

%set plot boundaries

xmin = 0.8; $left bound for x-axis

xmax = getp + 0.2; %right bound for x-axis

ymin = 0; %$lower bound for y-axis

ymax = curves(l,1); Supper bound for y-axis; largest mean ev in data

%************************Set plot vectors**********************************
$remaining variables have already been found; listed here for reference in

$terms of graphing ease. Order is the highest plot to the lowest plot
%plotting values are returned in curves matrix-->includes polyval, polyfit

eind = size(curves,?2); gnumber of columns in the curve

curvel = curves(l,:); Snnun mev's for nnup

curve?2 = curves(2,:); $interpolated mev's for getn on nnun

curve3 = curves (3,:); Snnun mev's for nnlp

curved = curves (4, :); %interpolated mev's for getp

curve5 = mevvec (l:eind); $from the MCS run--yes, mean b/c random data
curve6 = curves (5,:); gnnln mev's for nnlp

curve7 = curves (6, :); %interpolated mev's for getn on nnln

curve8 = curves(7,:); gnnun mev's for nnlp

xx = l:eind; $x-values; common to all plots

figure(l); box on; hold on;
axis([xmin xmax ymin ymax + 0.5]);

set (gca, 'XTick',l:getp); %display only integers on x axis
if getp > 30 %keep scaling under control

set (gca, 'XTick', floor (linspace(l,nnlp,10)))
end
plot (xx,curvel, '"bs-"', 'LineWidth', 2) $tabled mev's (nnup,nnln)
plot (xx,curve2, 'b:") Supper interp model
plot (xx,curve3, 'bo-"', 'LineWidth',2) $tabled mev's (nnup,nnun)
plot (xx,curve6, "ks-"', 'LineWidth', 2) Stabled mev's (nnlp,nnln)
plot (xx,curve7, 'k:") %$lower interp model
plot (xx,curve8, 'ko-"', 'LineWidth', 2) $tabled mev's (nnlp,nnun)
plot (xx,curved, 'r:d") %$Interpolated solution
plot (xx,curve5, 'r', 'LineWidth', 2) %$Actual eigenmean solution
line ([xmin xmax], [1 1], 'Color','k"); %$Kaiser's criterion

o

%$chart details
xlabel ('Component (C i)', 'FontSize',12)
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ylabel ('$$\mathsf{\hat \lambda}s$S$',
'interpreter', 'latex', 'fontsize',14)
title(['20M Interpolation of Point (',int2str (getp),'
") '], 'FontWeight', 'bold', 'FontSize',12)
legend (...
['Upper Nearest Neighbor (',int2str (nnup)

l4

['Upper Nearest Neighbor (

['Lower Nearest Neighbor (',int2str (nnlp),
['"Lower Interpolated Curve (',int2str (nnlp)
['Lower Nearest Neighbor (',int2str (nnlp), "'
['Interpolated Solution (',int2str(getp),',
['Horn''s Algorithm Soln (',int2str (getp), '
'Location', '"NorthEast')

hold off

fprintf ('Done!\n")
fprintf ("***End of processing.***\n\n')

o)

°

%end of program
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Main Script: HornsMethodSampledMEV.m

%$0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
%$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA
%US Government disclaimer:

%$The views expressed in this thesis are those of the author and do not
Sreflect the official policy or position of the United States Air Force,
$Department of Defense, or the United States Government.

%$This material is declared a work of the U.S. Government and is not subject
%$to copyright protection in the United States.

%21 March 2013

%$Graph the eigenvalue curves for a sampled (real-world) dataset.

%$This script references a table of pre-determined, sorted mean eigenvalues

%and then interpolates to trap the (p',n') pair in the information in the
$table. Various configurations that may be presented by a user to the

$script are discussed below.

o

%$initialize the workspace
close all; clear all; clc
%$initialize global variables--they are in the lookup table

global tablex ssizep ssizen; Sthese variables are global in nature
%$load the lookup table. Do not confuse with a sample dataset!!!

$Format expected by the program is [p n meaneigenvalues] where
$-->p = # variables => sorted descending;

$-->n = # observations => sorted ascending;
$-->meaneigenvalues = data elements => sorted descending from EigenMean

load LookupTable.mat

o)

o

%$initialize local variables

validdata = false; $flag to stay in the input loop

smallsamp = false; sdata is 2-4 variables & can be direct calc'd

maxp = max(tablex(:,1)); %the largest variable value in the data

minp = min(tablex(:,1)); %the smallest variable (a.o. 13 Jan minp=5)
$PCA on less than 5 variables?!?

maxn = max (tablex(:,2)); %largest # of observations in the mapped data

minn = min (tablex(:,2)); %$smallest # of obs in the mapped data

cr = sprintf('\n'"); %carriage return variable; use with 'disp'

o

o

%display opening message

disp(['This script will find Horn''s Curve to aid in making a ''cr...
'Principal Components Analysis (PCA) dimensionality deter- ''cr...
'mination for an actual--sampled--data set. Horn''s Curve "'cr...
'is found by interpolating known, "ideal" data of size ''cr...
'equivalent to the actual sample size. Constraints regard- ''cr...
'ing input and what the script can do are listed below. '1); cr;

disp(['The input values must be within these ranges: 'cr...
' "1): cr;

fprintf (' # of variables (p) --> {%d,%d} \n',minp,maxp)

fprintf (' # of observations (n) --> {%d,%d} \n',minn,maxn)

disp ([ ''cr...
'A crucial condition to consider is underdetermined data; that' cr...
'is, data having fewer observations n than features p. PCA of' cr...
'underdetermined data is possible; however, this script does ' cr...
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'not accept such datasets. ''cr...

! ''cr...
'Please choose a dataset to load. Type the number and press ' cr...
'"""Enter.'' If the dataset is not listed, choose '"'0'' (zero)' cr...
'and type in the filename. 'cr...
Vo i m A A A A A A A A A A A A A A A e A e A e A A A e e A A e A e A e A e A e A e A e A e A e A A A A e A e A e A A A o A
cr...
'(l) Forest Fires ''cr...
'(2) Glass ''cr...
' (3) Parkinsons ''cr...
''(4) SECOM ''cr...
'(5) Seeds ''cr...
'(6) Semeion Handwriting Characters ''cr...
'(7) Steel Plates ''cr...
'(8) Wisconsin Breast Cancer Study ''cr...
'(9) Wines (Set 1) ''cr...
'(10) Wines (Set 2) ''cr...
]
cr
'(0) Manually enter a filename ' cr
T '])icr;
while validdata == false;
sel = input('-> Please make a selection (1-10) or (0): ');
%$find out which dataset to load based upon user's selection
switch sel
case 1
filename = 'ForestFires';
case 2
filename = 'Glass';
case 3
filename = 'Parkinsons';
case 4
filename = 'SECOM';
case 5
filename = 'Seeds';
case 6
filename = 'Semeion';
case 7
filename = 'SteelPlates';
case 8
filename = 'WIBreastCancer';
case 9
filename = 'Winesl';
case 10
filename = 'Wines2';
otherwise
fprintf ('Please enter the filename (script assumes .mat)\n')
filename = input('--> ','s"');
end
load(filename, '-mat'); S%the datafile to load
[getn,getp] = size(X); %size of the data
%check for all the conditions of X (min size, max size, n>p)
if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp
validdata = true; %binary that data is valid for processing
elseif getp > 1 && getp < 5
validdata = true; %binary that data is valid for processing
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smallsamp = true; $binary that direct computation is wvalid
fprintf ('The selected filename has data small enough for a direct\n')
fprintf ('calculation of Horn''s curve.\n\n')
else

fprintf ('The sample data is size %d x %d (obs x var).\n',getn,getp)
fprintf ('The lookup table is (%d to %d) observations and

\n',minn, maxn)
fprintf (' (%d to %d) variables. Please make another

selection.\n\n',minp, maxp)

end
if getp > getn; %check n and p relation--no underdetermined sets!
disp(['***There are more variables (p) than observations (n)' cr...
'in this data. The lookup table is constrained to no ' cr...
'less than p = n. Press ''ctrl''+''pause/break''' cr...

'to stop this script.***']); cr; cr;
validdata = false;
end
end

o

%call the interpolating function for p >= 5
%*****************************************‘k‘k***********************‘k‘k‘k*****
if smallsamp == false; %skip interpolation for small data

[curves,nnup,nnlp,nnun,nnln]=findcurves (getp,getn,minp,maxp,minn, maxn) ;
else

ssev = EigenMean (getn,getp,100);%small sample eigenvalues

curves = zeros(7,getp);

nnlp = getp;

nnup = getp;

nnln = getn;
nnun = getn;
end
%*************************Get Sorted elgenvalues of X**********************
fprintf ('Getting eigenvalues of (%dx%d)...',getn,getp)
R = corr (X); %$X is the data matrix
[V,D] = eig(R); %Don't need V eigenvectors (use for loads);

%do need D eigenvalues
sev = sort(diag(D), 'descend')'; %'sev'=sampled data eigenvalues
fprintf ('Done!\n")

SR A EF KK F AKX I A hhrkhdhhhhr kb bk rdhr kb bk kkhrkhdhrkhrhhdhrdhrhk bk rkhrhrkhrkhxhrkrx

$plot the variables

fprintf ('Plotting all curves...'")

%create some new variables to increase graphing readability

eind = size(curves,?2); Snumber of columns in the curve

esev = size(sev,2); Swant to show all the eigenvalues

%set plot boundaries

xmin = 0.8; $left bound for x-axis

xmax = esev + 0.2; $right bound for x-axis

ymin = 0; %$lower bound for y-axis

ymax = sev(l) + 0.5; Supper bound for y-axis; largest ev in data

%$find out where the two lines (interpolated and actual) cross; this is the
Sentire utility of Horn's Curve in a nutshell

%************************Set plot vectors**********************************
$remaining variables have already been found; listed here for reference in
$terms of graphing ease. Order is the highest plot to the lowest plot
%what's the case with Horn's curve? Small dataset = special situation.
%Note: 'curves' gets returned with all nearest neighbor & surrogate curves
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if smallsamp == false

curved=curves (4, :); %interp sev's for getp
else
curved=ssev; %$small sample eigenvalues
end
xx = l:eind; $x-values; common to all interpolated curves
screeX = l:esev; Svector of indices in sampled data eigenvalue
screeY = sev; $sampled data eigenvalues
dl = length(curved); %$length of curved
screeRX = zeros(l,dl); S%preallocate the vector.
screeRY = zeros(l,dl); %eigenvalues that would be discarded by Horn's Test
count = 1; %$reset counter in outer loop
gcount = 1; %reset counter for inner loop
gflag = false; %was a contested (for dimen.) eigenvalue found?

%get the eigenvalues that Horn's test indicates are less than the dim.
$they will be colored gray in the plot

for i=1:d1
if (curved (i) > sev(i)); %ck for point above Horn's curve
screeRX (count) = i;
screeRY (count) = sev(i);
count = count + 1;
%check to see if a point less than Horn's curve is > 1. These are

%eigenvalues that we would keep just by using Kaiser's criterion
if sev(i) > 1
gflag = true;
gx (1l,gcount) = 1i;
gy (1,gcount) = sev(i);
gcount = gcount + 1;
Snext 8 lines summarize for the screen. Will only show if this

sub
%is run.
pctvar?2 = sum((qy)/getp)*100;
cpc = length(gx); %# of contested prin components
end
end
end

%clear up extra zeros in screeRX, screeRY

%$if the input variable getp is a tabled value, there is nothing left to add
%and the remaining zeros in the array should be truncated.

%otherwise (at the 'else') reindex the array and count-in the smallest
%eigenvalues of sev that extend beyond the length of curve4. The smallest
%eigenvalues will be plotted but colored so that it's obvious they are not
%considered significant to PCA.

if nnlp == nnup %getp is a direct match in the table
[rt] = find(screeRX == 0);
screeRX (rt) = [1]; Struncate trailing zeros
screeRY (rt) = []; %truncate trailing zeros
else
d2 = screeRX(1l) :getp;
screeRX = d2; %need the integers from the first cutoff eigen-
screeRY = sev (d2); %value to the total number in sev
end

o

%Capture the PC and pct variance for Horn's
pchorns = length(screeX)-length (screeRX) ; %$find the #ev's above the curve
pctvarl = sum( (screeY (1l:pchorns)) /getp)*100;

o

°
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figure(l); box on; hold on;

set (gca, 'XTick',l:getp); %display only integers on x axis

if getp > 30 %keep scaling under control
set (gca, 'XTick', floor (linspace(l,nnlp,10)))
xmin = 0; %$large values--give some more whitespace
xmax = getp+tgetp*0.02; %

end

axis([xmin xmax ymin ymax]);

o)

%uncomment these boxes to see where the tabled & interpolated curves are
%doing so will royally mess up the legend entries--therefore not
$recommended for 'long term' use

$plot (xx,curvel, 'bs-"', 'LineWidth', 2) Stabled sev's (nnup,nnln)
$plot (xx,curve?2, 'b:") %upper interp model
$plot (xx,curve3, 'bo-"', 'LineWidth', 2) %tabled sev's (nnup,nnun)
$plot (xx, curveb, 'rs-', 'LineWidth', 2) %tabled sev's (nnlp,nnln)
%plot (xx,curve7, 'r:") %lower interp model
$plot (xx,curve8, 'ro-"', 'LineWidth', 2) Stabled sev's (nnlp,nnun)

$plot (screeX, screeY, 'b', 'LineWidth',2); %$sampled data scree line (A)

plot (screeX, screeY, 'b', 'LineWidth',2); S%$sampled data scree line

plot (xx,curved, 'r', 'LineWidth', 2) %$Interpolated Horn's Curve soln

line ([xmin xmax], [l 1], 'Color','k"); %$Kaiser's criterion

$scatter (screeX, screeY,64,[1 0.5 0.3],'filled', "MarkerEdgeColor"', 'k'"'); (B)

%this line above has good scatterplot color; looking for green, though

scatter (screeX, screeY, 64, [0 0.9 0.2],'filled', "MarkerEdgeColor', 'k'");

scatter (screeRX, screeRY,64,[0.9 0.9 0.9],"'filled', "MarkerEdgeColor','k");

if gflag == true $contested eigenvalues betw. Horn's & Kl1. Display in red
scatter (gx,qy,64,[1 0 0], 'filled', '"MarkerEdgeColor', 'k');

end

o

°

%$chart details

xlabel ('Component (C i)', 'FontSize',12)

ylabel ('Eigenvalue ( \lambda)', 'FontSize',12)

$ylabel ('\lambda', 'FontSize',12)

legend('Scree Line','Horn''s Curve', 'Kaiser''s Criterion (K1)',...
'Location', '"NorthEast"')

$title('Sampled Data of Size (517x13)"', 'FontSize',12, 'FontWeight', 'bold")

title(['sev Interpolated Solution of Dataset "', filename,...
'™ (',int2str (getn), 'x',int2str (getp), ') '], ...
'FontWeight', 'bold', 'FontSize',12)

Sbreak; % (D)uncomment if running plain curve
if gflag == true; %choose the correct legend; did we contest components?

%if gflag = 1, then yes there is something here

legend('Scree Line', 'Horn''s Curve',...

'Kaiser''s Criterion (K1) = 1.0",...

["\bf',int2str (pchorns), ' \rm \lambda > Horn''s Curve > K1'],...

["\bf',int2str (getp-pchorns-cpc), ...

' \rm \lambda < Horn''s Curve < K1'],...

["\bf',int2str(cpc), "' \rm K1l < \lambda < Horn''s Curve']l, ...

'Location', '"NorthEast")

elseif gflag == false; %no contested points--both tests are in agreement
legend('Scree Line', 'Horn''s Curve',
'Kaiser''s Criterion (K1) = 1.0",...

["\bf',int2str (pchorns), ...
" \rm \lambda > Horn''s Curve > K1'],...
["\bf',int2str (getp-pchorns), ...
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' \rm \lambda < Horn''s Curve < K1'],...
'Location', '"NorthEast")
end
hold off
fprintf ('Done!\n")

o

%send summary to the screen
disp('*************************** Summary ******************************')’-
cr;
if gcount > 1; Sgcount = #0of contested eigenvalues for dimensionality
$because gcount is also a loop marker, #ev's = val -1
fprintf ('Dimensionality is estimated at %d principal components
by\n',pchorns)
fprintf ('Horn''s test. There are a total of %d eigenvalues below
Horn''s\n', cpc)
disp(['curve and greater than Kl. These eigenvalues should be further'

cr...

'evaluated against additional criteria for usefulness.' cr...
' (Additional criteria == qualitative and quantitative ''cr...
'aspects of the study that are particular to a dataset, ' cr...
'purpose of the study, and analyst selection.) '"1):cr;

fprintf ('"\n'")

fprintf ('-->Component #: $d Eigenvalue: %2.4f <--\n', [gx; qy]):;

fprintf ('\n'")

fprintf ('Proportion of total variance explained by Horn''s =

$2.2f%%.\n"',pctvarl);
fprintf ('Additional proportion of total variance explained by the\n')
fprintf ('contested "between the curves" components: %2.2f%%.\n',pctvar2)
fprintf ('If %d contested components are included, proportion =
%2.2f%%.\n',cpc,pctvarl+pctvar?)
else
fprintf ('Dimensionality is estimated at %d principal
components.\n',pchorns)
fprintf ('Proportion of total variance explained = %2.2f%%.\n',pctvarl)
fprintf ('There are no contested components.\n')
end
disp(l******************************************************************'),-
fprintf ('THE FILENAME USED IN THIS ANALYSIS IS %s \n',filename)
fprintf ('\nEnd of processing.\n\n')

o

%end of script
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Main Script: HornsMethodSampled20OM.m

%$0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
%Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA
%US Government disclaimer:

%$The views expressed in this thesis are those of the author and do not
Sreflect the official policy or position of the United States Air Force,
%Department of Defense, or the United States Government.

%$This material is declared a work of the U.S. Government and is not subject
%$to copyright protection in the United States.

%21 March 2013

%$Graph the eigenvalue curves for a sampled (real-world) dataset.

$This script references a table of pre-determined, sorted mean eigenvalues

%and then interpolates to trap the (p',n') pair in the information in the
$table. Various configurations that may be presented by a user to the

$script are discussed below.

o

%$initialize the workspace

close all; clear all; clc

%$initialize global variables--they are in the lookup table

global tablexbeta ssizep ssizen; Sthese variables are global in nature

o)

%$load the lookup table. Do not confuse with a sample dataset X!!!

$Format expected by the program is tablexbeta = [p n b2 bl b0] where
$-->p = # variables => sorted descending;
$-->n = # observations => sorted ascending;

%$-->{b2 bl b0} = data elements => coefficients from the lookup table
load LookupTableCoeffs.mat

o)

o

%$initialize local variables

validdata = false; $boolean flag to stay in the input loop

smallsamp = false; %data is 2-4 variables & can be direct calc'd

maxp = max (tablexbeta(:,1)); %the largest variable value in the data

minp = min(tablexbeta(:,1)); $the smallest variable (a.o. 13 Jan minp=5)
$PCA on less than 5 variables?!?

maxn = max (tablexbeta(:,2)); %largest # of observations in the mapped data

minn = min (tablexbeta(:,2)); $smallest # of obs in the mapped data

cr = sprintf('\n'"); %carriage return variable; use with 'disp'

o

o

%display opening message

disp(['This script will find Horn''s Curve to aid in making a ''cr...
'Principal Components Analysis (PCA) dimensionality deter- ''cr...
'mination for an actual--sampled--data set. Horn''s Curve ''cr...
'is found by interpolating known, "ideal" data of size ''cr...
'equivalent to the actual sample size. Constraints regard- ''cr...
'ing input and what the script can do are listed below. '1); cr;

disp(['The input values must be within these ranges: 'cr...
' "1): cr;

fprintf (' # of variables (p) --> {%d,%d} \n',minp,maxp)

fprintf (' # of observations (n) --> {%d,%d} \n',minn,maxn)

disp ([ ''cr...
'A crucial condition to consider is underdetermined data; that' cr...
'is, data having fewer instances n than features p. PCA of ''cr...
'underdetermined data is possible; however, this script does ' cr...
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'not accept such datasets. ''cr...

! ''cr...
'Please choose a dataset to load. Type the number and press ' cr...
'"""Enter.'' If the dataset is not listed, choose '"'0'' (zero)' cr...
'and type in the filename. 'cr...
Vo m v v A A A A A A A A A A A A A A A A A e A A A A e A e A e A e A e A e A e A e A e A A A e A A e e A e A e A e A o A
cr...
'(l) Forest Fires ''cr...
'(2) Glass ''cr...
' (3) Parkinsons ''cr...
''(4) SECOM ''cr...
'(5) Seeds ''cr...
'(6) Semeion Handwriting Characters 'cr...
'(7) Steel Plates ''cr...
'(8) Wisconsin Breast Cancer Study ''cr...
'(9) Wines (Set 1) ''cr...
'(10) Wines (Set 2) ''cr...
]
cr
'(0) Manually enter a filename ' cr
T ']1)icr;
while validdata == false;
sel = input('-> Please make a selection (1-10) or (0): ');
%$find out which dataset to load based upon user's selection
switch sel
case 1
filename = 'ForestFires';
case 2
filename = 'Glass';
case 3
filename = 'Parkinsons';
case 4
filename = 'SECOM';
case 5
filename = 'Seeds';
case 6
filename = 'Semeion';
case 7
filename = 'SteelPlates';
case 8
filename = 'WIBreastCancer';
case 9
filename = 'Winesl';
case 10
filename = 'Wines2';
otherwise
fprintf ('Please enter the filename (script assumes .mat)\n')
filename = input('--> ','s"');
end
load(filename, '-mat'); S%the datafile to load
[getn,getp] = size(X); %size of the data

%check for all the conditions of X (min size, max size, n>p)

if getn >= minn && getn <= maxn && getp >= minp && getp <= maxp
validdata = true;

elseif getp > 1 && getp < 5
validdata = true; %binary that data is valid for processing
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smallsamp = true; $binary that direct computation is wvalid
fprintf ('The selected filename has data small enough for a direct\n')
fprintf ('calculation of Horn''s curve.\n\n')
else

fprintf ('The sample data is size %d x %d (obs x var).\n',getn,getp)
fprintf ('The lookup table is (%d to %d) observations and

\n',minn, maxn)
fprintf (' (%d to %d) variables. Please make another

selection.\n\n',minp, maxp)

end
if getp > getn; %check n and p relation
disp(['***There are more variables (p) than observations (n)' cr...
'in this data. The lookup table is constrained to no ' cr...
'less than p = n. Press ''ctrl''+''pause/break''' cr...
'to stop this script.***']); cr; cr;
validdata = false;
end

end

o

%call the interpolating function
%**************************************************************************
if smallsamp == false; %skip interpolation for small data

[curves,nnup, nnlp,nnun,nnln]=findcurves20M (getp, getn,minp, maxp,minn, maxn) ;
else

ssev = EigenMean (getn,getp,100); %small sample eigenvalues

curves = zeros(7,getp);

nnlp = getp;

nnup = getp;

nnln = getn;
nnun = getn;
end
%**************‘k**********Get Sorted elgenvalues of X**********************
fprintf ('Getting eigenvalues of (%dx%d) sampled data...',getn,getp)
R = corr (X); %$X is the data matrix
[V,D] = eig(R); %Don't need Vy eigenvectors;

%do need Dy eigenvalues
screeY = sort(diag (D), 'descend')';
fprintf ('Done!\n")

SR A EF KK F AKX I A hhrkhdhhhhr kb bk rdhr kb bk kkhrkhdhrkhrhhdhrdhrhk bk rkhrhrkhrkhxhrkrx

$plot the variables

fprintf ('Plotting all curves...'")

%create some new variables to increase graphing readability

cols = size(curves,?2); Snumber of columns in the curve

screeX = l:cols; svector of indices in sampled data eigenvalue
%set plot boundaries

xmin = 0.8; $left bound for x-axis

xmax = cols + 0.2; %right bound for x-axis

ymin = 0; %$lower bound for y-axis

ymax = screeY(l) + 0.5; Supper bound for y-axis; largest ev in data

%$find out where the two lines (interpolated and actual) cross; this is the

Sentire utility of Horn's Curve in a nutshell
%************************Set plot vectors**********************************

%Note: 'curves' returns all NN and surrogate curves; only 'curved' needed
$what's the case with Horn's curve? Small dataset = special situation
if smallsamp == false

curved=curves (4, :); $interp betas for getp
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else

curved=ssev; %small sample eigenvalues
end
dl = length(curved); %length of curved4--the est. Horn's curve
screeRX = zeros(1l,dl); $preallocate the vector.
screeRY = zeros(1l,dl); %eigenvalues that would be discarded by Horn's
count = 1; %reset counter in outer loop
gcount = 1; $reset counter for inner loop
gflag = 0; %was a contested (for dimen.) eigenvalue found?
for i=1:d1
if curved (i) > screeY (1) %screeY is the curve of sampled eigenvalues
screeRX (count) = i;
screeRY (count) = scree¥Y(i);
count = count + 1;
$check to see if a point less than Horn's curve is > 1. These are

%eigenvalues that we would keep just by using Kaiser's criterion
if screeY (i) > 1

gflag = 1;
gx (1l,gcount) = 1i;
gy (1,gcount) = screeY (i);

gcount = gcount + 1;
pctvar?2 = sum((qy)/getp) *100;
cpc = length(gx); $# of contested prin components
end
end
end

d2 = screeRX(1l) :getp;

screeRX = d2; $need the integers from the first cutoff eigen-
screeRY = screeY (d2); $value to the total number in mev

%$so how did the PC dimensionality estimate go? Capture the PC for Horn's
pchorns = length (screeX)-length (screeRX) ; $find the #ev's above the curve
pctvarl = sum((screeY (1:pchorns))/getp) *100;

figure(l); box on; hold on;

set (gca, 'XTick',l:getp); %display only integers on x axis
if getp > 30 %keep scaling under control
set (gca, 'XTick', floor (linspace(l,nnlp,10)))
xmin = 0; %$large values--give some more whitespace
xmax = getp+tgetp*0.02; %
end
axis([xmin xmax ymin ymax]);
plot (screeX, screeY, 'b', 'LineWidth', 2) %$Scree line
plot (screeX,curved, 'r', 'LineWidth', 2) $Interpolated Horn's Curve soln
line ([xmin xmax],[1 1], 'Color','k") %$Kaiser's criterion

scatter (screeX, screeY,64,[0 0.9 0.2],'filled', '"MarkerEdgeColor', "k'");
scatter (screeRX, screeRY,64,[0.9 0.9 0.9],'filled', "MarkerEdgeColor','k'");
if gflag == true; %contested eigenvalues betw. Horn's & Kl. Display in red
scatter (gx,qy,64,[1 0 0], 'filled', '"MarkerEdgeColor', 'k');
end
%chart details
xlabel ('Component (C i)', 'FontSize',12)
ylabel ('Eigenvalue ( \lambda)', 'FontSize',12)
title(['20M Interpolated Solution of Dataset "', filename, ...
" (',int2str(getn), 'x',int2str (getp), ') '], ...
'FontWeight', 'bold', 'FontSize',12)
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if gflag == true; $choose the correct legend; did we contest components?
$if true, then yes there is something here
legend('Scree Line', 'Horn''s Curve',...
'Kaiser''s Criterion (K1) = 1.0",...
["\bf',int2str (pchorns), ...
' \rm \lambda > Horn''s Curve > K1'],...
["\bf',int2str (getp-pchorns-cpc), ...
" \rm \lambda < Horn''s Curve < K1'],...
["\bf',int2str (cpc), ...
' \rm K1 < \lambda < Horn''s Curve'l], ...
'Location', 'NorthEast')

elseif gflag == false; %no contested points--both tests are in agreement
legend('Scree Line', 'Horn''s Curve',...
'Kaiser''s Criterion (K1) = 1.0",...

["\bf',int2str (pchorns), ...
" \rm \lambda > Horn''s Curve > K1'],...
["\bf',int2str (getp-pchorns), ...
" \rm \lambda < Horn''s Curve < K1'],...
'Location', "NorthEast"')
end
hold off
fprintf ('Done!\n")
$send summary to the screen
disp('*************************** Summary ‘k‘k‘k***************************');
cr;
if gcount > 1; S%$gcount = #o0f contested eigenvalues for dimensionality
$because gcount is also a loop marker, #ev's = val -1
fprintf ('Dimensionality is estimated at %d principal components
by\n',pchorns)

fprintf ('Horn''s test. There are a total of %d eigenvalues below
Horn''s\n', cpc)
disp(['curve and greater than Kl1. These eigenvalues should be further'
cr...
'evaluated against additional criteria for usefulness.' cr
' (Additional criteria == qualitative and quantitative ''cr...
'aspects of the study that are particular to a dataset, ' cr...
'purpose of the study, and analyst selection.) 'l);cr;
fprintf ('\n")
fprintf ('-->Component #: $d Eigenvalue: %$2.4f <--\n', [gx; qy]);

fprintf ("\n'")
fprintf ('Proportion of total variance explained by Horn''s =
%2.2f%%.\n"',pctvarl);
fprintf ('Additional proportion of total variance explained by the\n')
fprintf ('contested "between the curves" components: $2.2f%%.\n',pctvar2)
fprintf ('If %d contested components are included, proportion =
%2.2f%%.\n',cpc,pctvarl+pctvar?)
else
fprintf ('Dimensionality is estimated at %d principal
components.\n',pchorns)
fprintf ('Proportion of total variance explained = %2.2f%%.\n',pctvarl)
fprintf ('There are no contested components.\n')
end
disp(|******************************************************************')’-
fprintf ('THE FILENAME USED IN THIS ANALYSIS IS %s \n',filename)
fprintf ('\nEnd of processing.\n\n')

o
°

%end of script
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Supporting Function: EigenMean.m

function[meanev] = EigenMean (p,n, k)

%$0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%The views expressed in this thesis are those of the author and do not
$reflect the official policy or position of the United States Air Force,
%$Department of Defense, or the United States Government.

%$This material is declared a work of the U.S. Government and is not subject
$to copyright protection in the United States.

%21 March 2013

$NOTE: The comment lines above can be removed w/no loss of function help.
%This function finds the mean eigenvalues for a n x p data set. The mean
%eigenvalues are useful for performing Principal Components Analysis and
%are found through repeated iterations of normal random probability distri-
$bution calls and subsequent determination of the correlation matrix of

%size n x p. The random number draws are done in Monte Carlo simulation
%$iterations of size k. The function structure is:
% [meanev] = EigenMean (p,n, k)

oe

Inputs: p = # of variables;

o de

n = # of observations;
% k = # of Monte Carlo simulation iterations.
%Outputs: [meanev] is a return vector of size (1 x p) containing the
$sorted and averaged eigenvalues by index (#eigenvalues = #variables).
%A1l statistical assumptions are based upon data being distributed standard
normal (mean = 0, standard deviation = 1). The correlation operator is

applied to the random data matrix before extracting the eigenvalues.

*The function will warn when:

1) p is overfitted to n; that is, n should be at least as large as p and
%preferably 3p <= n. Note that large values of k (>1000) will result in
%$long processing times, and in instances with large (p,n) combinations it
$will appear that MATLAB has stopped responding. Therefore, unless utmost
%precision in the mean eigenvalues result is needed, such as least-squares
$model fitting where precise coefficient estimates must be made, consider

%using k = 1000 (the default setting if k is not provided). For curve
$fitting using interpolation methods, k = 100 may prove satisfactory if p

%is sufficiently large to "spread" the variation among more eigenvalues.
%$The tradeoff is more iterations push towards convergence of the true means
%at the expense of processing time (minutes are not uncommon if p,n,k are
%as small as a 500 each). Longer times (hours) are not out the question if
%the input parameters are in the thousands.

%*2) If a warning regarding eigenvalue computations is received due to
$non-real or singular results, check for lack of linear independence in the
$input matrix columns. One or more variables are dependent on another.

o
°
o
o

(Function version a.o. 14 Jan 13)

error (nargchk (2, 3,nargin))
if nargin == 2 %need at least two inputs (p,n)
fprintf (' (Using default MCS iterations k=100)\n'")
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k = 100;
end

if p>n
fprintf ('Data is overfitted (p>n). Check your input.\n'")
fprintf ('Computations will complete but the smallest eigenvalues\n ')
fprintf ('reduce to approximately zero.\n')

end
%get started; initialize wvariables
mev = diag(zeros(p)); $size of eigenvalue mean accumulator
Svariable
for i=1:k
Q = normrnd(0,1,n,p); %Generate Y--a random ~Norm(0,1)
tmatrix of n x p size
Ry = corr (Q); %Correlation matrix of X
[Vy,Dy] = eig(Ry); $Get (Vy) eigenvectors and
% (Dy) eigenvalues for correlation of Y
Dy = sort(diag(Dy), 'descend'); %too big for 'eigs'; sort 'eig' result
mev = mev + Dy; %adds each eigenvalue by array index
end
meanev = (mev.*(1/k))"'; Sreturn vector is the mean eigenvalues
%0of the correlation matrix sorted by
$index

oe

o)

%end of function
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Supporting Function: findcurves.m

function [curves,nnup,nnlp,nnun,nnln] = findcurves (p,n,minp,maxp,minn, maxn)
%0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA
%US Government disclaimer:

%$The views expressed in this thesis are those of the author and do not
$reflect the official policy or position of the United States Air Force,
%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject
%$to copyright protection in the United States.

%21 March 2013

%$Mean Eigenvalue Solution, Case I:

% * Both the wvariable (p') and observation (n') is in the range of the *

% * lookup table mapped values. Also, (p') and (n') are not the minimum *

% * nor maximum values in the table and the nearest neighbors method will *
* *

achieve satisfactory results.

he function returns six curves to the main executable:

Upper nearest neighbor variable, lower nearest neighbor observation.
Interpolated curve for p', based upon upper p & lower/upper obs.
Upper nearest neighbor variable, upper nearest neighbor observation.
Lower nearest neighbor variable, lower nearest neighbor observation.
Interpolated curve for p', based upon lower p & lower/upper obs.
Lower nearest neighbor variable, upper nearest neighbor observation.

global tablex ssizep ssizen

o)
o

rnnup = []; %init the data row variable; also acts as a flag to search
rnnlp = []; %init the data row variable; also acts as a flag to search
rnnun = []; %init the data row variable; also acts as a flag to search

ronnln = []; %$init the data row variable; also acts as a flag to search

%*******************************************************‘k*********‘k‘k‘k******
Srx*x**x*Check to see if data is already in the lookup table and at what***xx*
$*extremes. Data at or near an edge will need to be conditioned to accept*

$*something else than what the nearest neighbor search algorithm assigns***
%******Variable assignment*************************************************

[rp] = find(tablex(:,1) == p); %look for the input variable
if isempty(rp) == false; %found p' in tablex but where is 1it?
%p' is the minimum variable
if p == minp; %does p' = min table variable wvalue?
nnlp = p; $yes, assign lower neighbor to it
nnup = minp + ssizep; Supper nearest neighbor is a stepsize up
rnnup = rp; %abort the nnup, nnlp searches because
rnnlp = rp; Svariable assignments are made
%p' is the maximum variable
elseif p == maxp;
nnlp = maxp - ssizep; %go a stepsize down for nnlp
nnup = p; $already at highest variable value
rnnup = rp; %abort the nnup, nnlp searches because
rnnlp = rp; $variable assignments are made

%p' is somewhere in the middle; in this case, pass all known info fwd.
elseif p > minp && p < maxp
nnlp = p;
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nnup = p;

rnnup = rp;
rnnlp = rp;
end
end
if isempty(rp) == true; %did not find p' in the lookup table; search!
ind = 0; $reset the search index
while isempty (rnnup) && isempty (rp) Srun loop while empty
ind = ind+1; %incr the array counter
[rnnup] = find(tablex(:,1) == p+ind); %add the index
if ind > ssizep; %$lookup table is corrupted
fprintf ('"WARNING: Variable stepsize exceeded. Check tablex.\n')
rp = -1; %value indicates we had a problem here.
break; %$let program critical stop
end
end
nnup = p+ind; %got the upper neighbor
%now find the lower nearest neighbor variable
ind = 0; $reset the search index
while isempty(rnnlp) && isempty (rp) Srun loop while empty
ind = ind+1; $incr the array counter
[rnnlp] = find(tablex(:,1) == p-ind); $subtract the index
if ind > ssizep; %lookup table is corrupted
fprintf ('"WARNING: Variable stepsize exceeded. Check tablex.\n')
rp = -2; %value indicates we had a problem here.
break; %let program critical stop
end
end
nnlp = p-ind; %got the lower neighbor
end %exit out of looking for the variable neighbor indices

o
o

$truncate the data into a subset of tablex meaningful to the analysis

%create sub-matrix S of only the rows of p(-) and p(+)

S = [tablex(rnnup, :); tablex(rnnlp,:)];

trimp = find(S(end,:) > 0); %inspect the last row because it's p(-)

S = S(:,trimp); %eliminate sparsity in S; upper/lower vars equal length

%S is the reduced matrix to work from for observation nearest neighbors****
%**************‘k‘k‘k‘k*****Done Wlth VARIABLES************************‘k‘k‘k‘k****

g***find the OBSERVATION nearest neighbors in the truncated data matrix S**
$find the start of zero entries in the lower bound (nnlp) and then trim

%each bound (upper and lower) to that length. Purpose: set equal number of
$variables in the vectors of matrix S
[rn] = find(S(:,2) == n); %look for the input observation
if isempty(rn) == 0; %$found n in S but where is it?
%n is the minimum observation
if n == minn; %is the input = min(S) value?
nnln = n; syes, assign lower neighbor to it
nnun = minn + ssizen; %upper nearest neighbor is a stepsize up
rnnun = rn; %abort the nnun, nnln searches
rnnln = rn; %
%n is the maximum observation
elseif n == maxn;
nnln = maxn - ssizen; $go a stepsize down for nnln
nnun = n; $already at highest observation value
rnnun = rn; %$abort the nnun, nnln searches
rnnln = rn; %
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%n is somewhere in the middle; in this case, pass all known info fwd.
elseif n > minn && n < maxn

nnln = n;
nnun = n;
rnnun = rn;
rnnln = rn;
end
end
%$search column 2 for the upper/lower bounds
if isempty(rn) == 1
ind = 0; $reset the search index
while isempty (rnnun) $run loop while rnnup is empty
ind = ind+1; %...waiting to find a match
[rnnun] = find(S(:,2) == n+ind); %$ADD the index; search up from
end
nnun = n+ind; %got a match! upper neighbor
%now find the lower nearest neighbor variable
ind = 0; $reset the search index
while isempty (rnnln) $run loop while rnnlp is empty
ind = ind+1; %...waiting to find a match
[rnnln] = find(S(:,2) == n-ind); $SUB the index; search dn from
end
nnln = n-ind; %got a match! lower neighbor
end

o
°

%check for being on the diagonal n = p

if nnln == nnlp && nnun == nnup
nnln = nnun; %lower takes same obs. value as upper
[rnnln] = find(S(:,2) == nnln);

end

%$truncate data one more time; subset of S meaningful to the analysis
%$in between rows 2 and 3 is the solution for (getp,getn)
Y = [S(rnnln(1l),:);

S(rnnun(l),:);

S(rnnln(2),:);

S(rnnun(2),:)1;
%***************‘k‘k‘k***********************‘k‘k‘k******************************
%interpolation: find getn y-coordinate (mean eigenvalues) given a single
%$x-coordinate. This is a an inverse use of the interpl function, as it
$wants a unique x value for each y. Because the x-value is fixed along the
%curve (essentially the upper nearest neighbor and lower nearest neighbors
%are defining the curve), the interpl routine used here has to cycle
$through a pair of points defined at the upper and lower nn observations.
$format is (ev=mean eigenvalue in all cases):

%ev we want to find = interpl([fixed lower nn obs; fixed upper nn obs],...
[lower ev @ this x; upper ev @ this x],...
observation we are trying to find)

%this routine handles the 'bias' factor; that is, how close getn is to
%either the upper or lower nearest neighbors impacts the

o

o

ncol = length(Y(1l,3:end)); S%number of y-data columns (contains mean ev's)
%$DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2

evu = zeros(l,ncol); %preallocate space

evl = zeros(l,ncol); %preallocate space

getev = zeros (l,ncol); Spreallocate space

r KA KA A A A I A A A K A A KA A AR KA I A A AA I A A AAKAA I A I AAIAA I A A AA I AR A I A I A A I AR AR A A h Ak hX

$the logic in the following if/elseif lines evaluates four conditions for
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oe

(p,n) : The combinations that p and n are direct references in tablex.
ER I i b b b I b S b I b I b b b b b b b b b i b b b b b b b I b I b b b b b i b b b b b b b b b b b I b b b b b b b b b b b b i b I b b b

[

oe

(p,n) not in lookup tablex; interpolate a two-part solution.

%$Part 1: Upper and lower curves. Interpolate nnln, nnun variables for n
$Part 2: Middle curve (the answer!). Using the curves from Part 1 as
% input, interpolate the variable curve in between nnup and nnlp.
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun)

for i = l:ncol; %loop through the data; interpolate mev values

%for ev([u]lpper) and ev([l]ower) curves

evu(i) = interpl ([nnln;nnun], [Y(1,2+1);Y(2,2+i)],n); Supper ev's
evl (i) = interpl ([nnln;nnun], [Y(3,2+1);Y(4,2+i)],n); $lower ev's
end
%¥getev is the solution for the curve describing (p,n)
for i = l:ncol
getev (i) = interpl ([nnup;nnlp]l, [evu(i);evl(i)],p):
end
%p 1is in tablex; n is not. Get (p,nnun) and (p,nnln) to interp a soln
elseif isempty(rn) == 1 && isempty(rp) == 0;
for i = l:ncol; %loop through the data; interpolate ev's
getev (i) = interpl ([nnln;nnun], [Y(1,2+1);Y(2,2+1i)],n);
end
evu = getev; %already had the variable, only needed the
evl = getev; %interpolation on the observations
%p 1s not in tablex, n is. Get (nnlp,n) and (nnup,n) to interp a soln
%$OR statement is (p,n) was on diagonal and corrections made (~line 171)
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&...
~(nnlp == nnup)
evu = Y (1,3:end);
evl = Y(3,3:end);
for i = 1l:ncol;
getev (i) = interpl ([nnup;nnlp]l, [evu(i);evl(i)],p):
end
%(p,n) are both in the table. Direct referenced value--no interpolation
else isempty(rn) == 0 && isempty(rp) == 0;
evu = Y (1,3:end);
evl = evu;
getev = evu;
end
curvel = Y(1,3:end); gnnun mev's for nnup
curve?2 = evu; %interpolated mev's for getn on nnun
curve3 = Y(2,3:end); nnun mev's for nnlp
curved = getev; %interpolated mev's for getp
Scurve5 = mevvec (l:eind); $from the MCS run; function EigenMean provides
curve6 = Y (3,3:end); gnnln mev's for nnlp
curvel = evl; $interpolated mev's for getn on nnln
curve8 = Y (4,3:end); gnnun mev's for nnlp
$curveb5 will not be seen in the function return matrix
curves = [curvel; curve2; curve3; curved; curveb; curve7; curved];

o

°

%end of function
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Supporting Function: findcurves20M.m

function [curves,nnup,nnlp,nnun,nnln]=findcurves20M (p,n,minp,maxp,minn, maxn)
%0riginal code by Captain Andrew L. Bigley, USAF. Written for partial
$fulfillment of a Master's of Science Degree in Operations Research, The
$Air Force Institute of Technology (AFIT), Wright-Patterson AFB, OH USA

%US Government disclaimer:

%$The views expressed in this thesis are those of the author and do not
$reflect the official policy or position of the United States Air Force,
%Department of Defense, or the United States Government.

%This material is declared a work of the U.S. Government and is not subject
%$to copyright protection in the United States.

%21 March 2013

%$Linear regression second-order model, Case I:

% * Both the wvariable (p') and observation (n') is in the range of the *

% * lookup table mapped values. Also, (p') and (n') are not the minimum *

% * nor maximum values in the table and the nearest neighbors method will *
* *

achieve satisfactory results.

he function returns six curves to the main executable:

Upper nearest neighbor variable, lower nearest neighbor observation.
Interpolated curve for p', based upon upper p & lower/upper obs.
Upper nearest neighbor variable, upper nearest neighbor observation.
Lower nearest neighbor variable, lower nearest neighbor observation.
Interpolated curve for p', based upon lower p & lower/upper obs.
Lower nearest neighbor variable, upper nearest neighbor observation.

global tablexbeta ssizep ssizen

o)
o

rnnup = []; %init the data row variable; also acts as a flag to search
rnnlp = []; %init the data row variable; also acts as a flag to search
rnnun = []; %init the data row variable; also acts as a flag to search

ronnln = []; %$init the data row variable; also acts as a flag to search

%*******************************************************‘k*********‘k‘k‘k******
Srx*x*x*xx*Check to see if data is already in the lookup table and at what**x*x*
$*extremes. Data at or near an edge will need to be conditioned to accept*

$*something else than what the nearest neighbor search algorithm assigns***
%******Variable assignment*************************************************

[rp] = find(tablexbeta(:,1) == p); S%look for the input variable
if isempty(rp) == 0; %found p in tablex but where is 1it?
%p is the minimum variable
if p == minp; %is the input = min table variable value?
nnlp = p; $yes, assign lower neighbor to it
nnup = minp + ssizep; Supper nearest neighbor is a stepsize up
rnnup = rp; %abort the nnup, nnlp searches
rnnlp = rp; %
%p 1is the maximum variable
elseif p == maxp;
nnlp = maxp - ssizep; %go a stepsize down for nnlp
nnup = p; $already at highest variable value
rnnup = rp; %abort the nnup, nnlp searches
rnnlp = rp; %

%p 1is somewhere in the middle; in this case, pass all known info fwd.
elseif p > minp && p < maxp
nnlp = p;
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nnlp = p;
nnup = p;
rnnup = rp;
rnnlp = rp;
end
end
if isempty(rp) == 1
ind = 0; Sreset the search index
while isempty (rnnup) && isempty (rp) Srun loop while empty
ind = ind+1; $incr the array counter
[rnnup] = find(tablexbeta(:,1) == p+ind); %$add the index
if ind > ssizep
fprintf ('WARNING: Variable stepsize exceeded. Check tablex.\n')
rp = -1; %value indicates we had a problem here.
break
end
end
nnup = p+ind; %got the upper neighbor
%now find the lower nearest neighbor variable
ind = 0; Sreset the search index
while isempty(rnnlp) && isempty (rp) Srun loop while empty
ind = ind+1; %incr the array counter
[rnnlp] = find(tablexbeta(:,1) == p-ind); $subtract the index
if ind > ssizep
fprintf ('WARNING: Variable stepsize exceeded. Check tablex.\n')
rp = -2; %value indicates we had a problem here.
break
end
end
nnlp = p-ind; %got the lower neighbor
end %exit out of looking for the variable neighbor indices

oe

Struncate the data into a subset of tablex meaningful to the analysis

S = [tablexbeta (rnnup, :); tablexbeta (rnnlp,:)];

%S 1s the reduced matrix to work from for observation nearest neighbors****
%***********************Done With VARIABLES********************************
$***find the OBSERVATION nearest neighbors in the truncated data matrix S**
%$find the start of zero entries in the lower bound (nnlp) and then trim

%each bound (upper and lower) to that length. Purpose: set equal number of
$variables in the vectors of matrix S
[rn] = find(S(:,2) == n); %look for the input observation
if isempty(rn) == 0; $found n in S but where is it?
%n is the minimum observation
if n == minn; %is the input = min(S) value?
nnln = n; %yes, assign lower neighbor to it
nnun = minn + ssizen; Supper nearest neighbor is a stepsize up
rnnun = rn; %abort the nnun, nnln searches
rnnln = rn; %
%n is the maximum observation
elseif n == maxn;
nnln = maxn - ssizen; $go a stepsize down for nnln
nnun = n; %already at highest observation value
rnnun = rn; %abort the nnun, nnln searches
rnnln = rn; %

%n is somewhere in the middle; in this case, pass all known info fwd.
elseif n > minn && n < maxn
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nnln = n;

nnun = n;
rnnun = rn;
rnnln = rn;

end
end

o

$search column 2 for the upper/lower bounds

if isempty(rn) == 1
ind = 0; Sreset the search index
while isempty (rnnun) $run loop while rnnup is empty
ind = ind+1; %...waiting to find a match
[rnnun] = find(S(:,2) == n+ind); %$ADD the index; search up from n
end
nnun = n+ind; %got a match! upper neighbor
%now find the lower nearest neighbor variable
ind = 0; Sreset the search index
while isempty(rnnln) $run loop while rnnlp is empty
ind = ind+1; %...waiting to find a match
[rnnln] = find(S(:,2) == n-ind); $SUB the index; search dn from n
end
nnln = n-ind; %got a match! lower neighbor
end
%check for being on the diagonal n = p
if nnln == nnlp && nnun == nnup
nnln = nnun; %$lower takes same obs. value as upper
[rnnln] = find(S(:,2) == nnln);
end

$truncate data one more time; subset of S meaningful to the analysis
%in between rows 2 and 3 is the solution for (getp,getn)
Y = [S(rnnln(1l),:);

S(rnnun(l),:);

S(rnnln(2),:);

S(rnnun(2),:)1;
%***************‘k‘k‘k*********************************‘k**********************
%$interpolation: find getn y-coordinate (coefficients) given a single
$x-coordinate. This is a an inverse use of the interpl function, as it
Swants a unique x value for each y. Because the x-value is fixed along the
%curve (essentially the upper nearest neighbor and lower nearest neighbors
%are defining the curve), the interpl routine used here has to cycle
$through a pair of points defined at the upper and lower nn observations.
$format is (ev=mean eigenvalue in all cases):

%ev we want to find = interpl([fixed lower nn obs; fixed upper nn obs], ...
[lower ev @ this x; upper ev @ this x],...
observation we are trying to find)

%this routine handles the 'bias' factor; that is, how close getn is to
%either the upper or lower nearest neighbors impacts the

oe

o

gncol = length(Y(1l,3:end)); $number of y-data columns (contains coeffs)
$DO NOT USE ncol FOR PLOTTING--IT IS OFF BY 2

ncol = 3; %already know how many columns have beta val.

cu = zeros(l,ncol); %preallocate space

cl = zeros(l,ncol); %preallocate space

getbeta = zeros(l,ncol); %preallocate space

PREER R SRRt E R R R RS e R e R R R R R g

$the logic in the following if/elseif lines evaluates four conditions for
%(p,n): The combinations that p and n are direct references in tablex.
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%***************‘k‘k************************‘k********************************
% (p,n) not in lookup tablex; interpolate a two-part solution.
%$Part 1: Upper and lower curves. Interpolate nnln, nnun variables for n
SPart 2: Middle curve (the answer!). Using the curves from Part 1 as
% input, interpolate the variable curve in between nnup and nnlp.
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
if (isempty(rn) == 1 && isempty(rp) == 1) && ~(nnln == nnun)
for i = l:ncol; %loop through the data; interpolate beta values
%for coeff([ulpper) and coeff([l]ower) curves
cu(i) = interpl([nnln;nnun], [Y(1,2+1);Y(2,2+1i)],n); Supper
cl(i) = interpl([nnln;nnun], [Y(3,2+1);Y(4,2+1)],n); %lower
end
%getev is the solution for the curve describing (p,n)
for i = l:ncol
getbeta (i) = interpl ([nnup;nnlpl, [cu(i);cl(i)],p):
end
%p 1is in tablex; n is not. Get (p,nnun) and (p,nnln) to interp a soln
elseif isempty(rn) == 1 && isempty(rp) == 0;
for i = l:ncol; %loop through the data; interpolate ev's
getbeta (i) = interpl ([nnln;nnun], [Y(1,2+1);Y(2,2+1)],n);
end
cu = getbeta; %already had the variable, only needed the
cl = getbeta; %interpolation on the observations
%p 1s not in tablex, n is. Get (nnlp,n) and (nnup,n) to interp a soln
%OR statement is (p,n) was on diagonal and corrections made (~line 171)
elseif (isempty(rn) == 0 && isempty(rp) == 1) || nnln == nnun &&...
~(nnlp == nnup)
cu = Y(1,3:5);
cl = Y(3,3:5);
for i = l:ncol;
getbeta (i) = interpl ([nnup;nnlp]l, [cu(i);cl(i)],p):
end
%(p,n) are both in the table. Direct referenced value--no interpolation
else isempty(rn) == 0 && isempty(rp) == 0;
cu = Y(1,3:5);
cl = cu;
getbeta = cu;
end

o
°

%$return the curve describing the lines, not just the coefficients of the
Smodel

xfine = 1l:p; $0.1 controls the fidelity in the curve
%$to decrease, try 0.2 to 0.5

curvel = polyval(Y(1,3:5),xfine); snnun betas for nnup

curve2 = polyval (cu,xfine); $interpolated betas for getn on nnun

curve3 = polyval(Y(2,3:5),xfine); nnun betas for nnlp

curved = polyval (getbeta,xfine); %$interpolated betas for getp

%curve 5 not used in the 20M evaluation

curve6 = polyval(Y(3,3:5),xfine); nnln betas for nnlp

curve7 = polyval(cl,xfine); %interpolated betas for getn on nnln

curve8 = polyval(Y(4,3:5),xfine); nnun betas for nnlp

curves = [curvel; curve2; curve3; curved; curveb; curve7; curved];

o

°

%end of function
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Horn’s Curve Estimation Through Multi-

Introduction

*Principal Components (PCs)
Analysis (PCA) is a data reduction
technigue used to summarize
multivariate information through
hidden structure (components)

+Each component contains a
portion of total variance; those
considered significant are
‘principal’ and are extracted for
further analysis

+Determining how many PCs to
extract is not trivial

+Too many leads to meaningless
linear combinations

«Too few discards summary
information

Research Objectives

+Develop a graphical software tool
to determine accurately the
number PCs to extract

*Remove subjectivity on behalf of
the analyst; offer flexible,
parsimonious solutions-of-value

«Incorporate supplementary visual
and tabular information

INSTITUTI
CHNOLOGY

Dimensional Interpolation

Capt Andrew L. Bigley
Advisor: Dr. Kenneth W. Bauer
Reader: Lt Col Mark A. Friend
Department of Operational Sciences (ENS)
Air Force Institute of Technology

Methodology

Criteria for a candidate stopping rule:

+Visual, Accurate dimensionality estimator,
Leads to objective assessments
Step 1: Survey the literature for candidates

+Three techniques located; Horn’s test
selected due to accuracy & positive eval.

fleeem

Step 2: Determine size of studies to address

+Number and sizes of published research
indicate region-of-interest (ROI) is within
5<p<1000 and 5 £ n £ 7000 (captures
80.3% of the 178 studies surveyed)

Step 3: Develop Horn’s test theory into
MATLAB algorithms. Horn’s methodology
separates noise from signal by considering
inherent random error from useful
information in the sample scree line

1
i

*Horn’s methodology requires two distinct
elements (sampled & random data)
+The final solution is a synthesis of both
brought together
- Two solution strategies, similar methods
*Mean eigenvalues
+Linear regression second-order model
*Monte Carlo simulation of random data

| fefl2,...n-Ln}

x, ~ NID(0, 1,.) where 2> X, =

ljeiLz, .p-1p} .
+Eigendecomposition of corr(x,_ )
*Lookup table of sparse, preprocessed data
(196 hrs CPU time for 26,650 x 1002 matrix,
80 MB; regression compacts to <1 MB)
*Lookup tables nearest neighbor search
»Two-part piecewise linear interpolation
Step 4: Bring both elements together &
display graphical and st y

p

o Xy

Contributions

*Successfully automated the PC
extraction stopping rule Horn’s
test (Parallel Analysis)

+Dimensionality estimate presented
clearly in graphical and tabulated
formats

*Visual analysis includes familiar
features of other, common
stopping rules

| *Qutput for percent variance

summarized by the PCs plus any
‘contested’ components

+Analyst allowed flexibility to
combine ‘art with science’ in
reaching an informed assessment

«Balances removal of
unwarranted subjectivity with
too rigid of an analytical result

Future Research

*Confirmatory analysis of algorithm
accuracy using datasets of
designed structure

+Possibility of artificial neural
network to learn the ROI

*Discovery of ‘pathological’ type
datasets and how the algorithms
should handle them
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